Files
OpenCellular/common/timer.c
Bill Richardson bb15561db5 cleanup: DECLARE_CONSOLE_COMMAND only needs 4 args
Since pretty much always, we've declared console commands to take
a "longhelp" argument with detailed explanations of what the
command does. But since almost as long, we've never actually used
that argument for anything - we just silently throw it away in
the macro. There's only one command (usbchargemode) that even
thinks it defines that argument.

We're never going to use this, let's just get rid of it.

BUG=none
BRANCH=none
CQ-DEPEND=CL:*279060
CQ-DEPEND=CL:*279158
CQ-DEPEND=CL:*279037
TEST=make buildall; tested on Cr50 hardware

Everything builds. Since we never used this arg anyway, there had
better not be any difference in the result.

Change-Id: Id3f71a53d02e3dc625cfcc12aa71ecb50e35eb9f
Signed-off-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/374163
Reviewed-by: Myles Watson <mylesgw@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2016-08-24 16:30:10 +00:00

324 lines
7.1 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Timer module for Chrome EC operating system */
#include "atomic.h"
#include "console.h"
#include "hooks.h"
#include "hwtimer.h"
#include "system.h"
#include "util.h"
#include "task.h"
#include "timer.h"
#define TIMER_SYSJUMP_TAG 0x4d54 /* "TM" */
/* High word of the 64-bit timestamp counter */
static volatile uint32_t clksrc_high;
/* Bitmap of currently running timers */
static uint32_t timer_running;
/* Deadlines of all timers */
static timestamp_t timer_deadline[TASK_ID_COUNT];
static uint32_t next_deadline = 0xffffffff;
/* Hardware timer routine IRQ number */
static int timer_irq;
static void expire_timer(task_id_t tskid)
{
/* we are done with this timer */
atomic_clear(&timer_running, 1 << tskid);
/* wake up the taks waiting for this timer */
task_set_event(tskid, TASK_EVENT_TIMER, 0);
}
int timestamp_expired(timestamp_t deadline, const timestamp_t *now)
{
timestamp_t now_val;
if (!now) {
now_val = get_time();
now = &now_val;
}
return ((int64_t)(now->val - deadline.val) >= 0);
}
void process_timers(int overflow)
{
uint32_t check_timer, running_t0;
timestamp_t next;
timestamp_t now;
if (overflow)
clksrc_high++;
do {
next.val = -1ull;
now = get_time();
do {
/* read atomically the current state of timer running */
check_timer = running_t0 = timer_running;
while (check_timer) {
int tskid = __fls(check_timer);
/* timer has expired ? */
if (timer_deadline[tskid].val <= now.val)
expire_timer(tskid);
else if ((timer_deadline[tskid].le.hi ==
now.le.hi) &&
(timer_deadline[tskid].le.lo <
next.le.lo))
next.val = timer_deadline[tskid].val;
check_timer &= ~(1 << tskid);
}
/* if there is a new timer, let's retry */
} while (timer_running & ~running_t0);
if (next.le.hi == 0xffffffff) {
/* no deadline to set */
__hw_clock_event_clear();
next_deadline = 0xffffffff;
return;
}
__hw_clock_event_set(next.le.lo);
next_deadline = next.le.lo;
} while (next.val <= get_time().val);
}
#ifndef CONFIG_HW_SPECIFIC_UDELAY
void udelay(unsigned us)
{
unsigned t0 = __hw_clock_source_read();
/*
* udelay() may be called with interrupts disabled, so we can't rely on
* process_timers() updating the top 32 bits. So handle wraparound
* ourselves rather than calling get_time() and comparing with a
* deadline.
*
* This may fail for delays close to 2^32 us (~4000 sec), because the
* subtraction below can overflow. That's acceptable, because the
* watchdog timer would have tripped long before that anyway.
*/
while (__hw_clock_source_read() - t0 <= us)
;
}
#endif
int timer_arm(timestamp_t tstamp, task_id_t tskid)
{
ASSERT(tskid < TASK_ID_COUNT);
if (timer_running & (1<<tskid))
return EC_ERROR_BUSY;
timer_deadline[tskid] = tstamp;
atomic_or(&timer_running, 1<<tskid);
/* Modify the next event if needed */
if ((tstamp.le.hi < clksrc_high) ||
((tstamp.le.hi == clksrc_high) && (tstamp.le.lo <= next_deadline)))
task_trigger_irq(timer_irq);
return EC_SUCCESS;
}
void timer_cancel(task_id_t tskid)
{
ASSERT(tskid < TASK_ID_COUNT);
atomic_clear(&timer_running, 1 << tskid);
/*
* Don't need to cancel the interrupt: it would be slow, just do it on
* the next IT
*/
}
/*
* For us < (2^31 - task scheduling latency)(~ 2147 sec), this function will
* sleep for at least us, and no more than 2*us. As us approaches 2^32-1, the
* probability of delay longer than 2*us (and possibly infinite delay)
* increases.
*/
void usleep(unsigned us)
{
uint32_t evt = 0;
uint32_t t0 = __hw_clock_source_read();
/* If task scheduling has not started, just delay */
if (!task_start_called()) {
udelay(us);
return;
}
ASSERT(us);
do {
evt |= task_wait_event(us);
} while (!(evt & TASK_EVENT_TIMER) &&
((__hw_clock_source_read() - t0) < us));
/* Re-queue other events which happened in the meanwhile */
if (evt)
atomic_or(task_get_event_bitmap(task_get_current()),
evt & ~TASK_EVENT_TIMER);
}
timestamp_t get_time(void)
{
timestamp_t ts;
ts.le.hi = clksrc_high;
ts.le.lo = __hw_clock_source_read();
if (ts.le.hi != clksrc_high) {
ts.le.hi = clksrc_high;
ts.le.lo = __hw_clock_source_read();
}
return ts;
}
clock_t clock(void)
{
/* __hw_clock_source_read() returns a microsecond resolution timer.*/
return (clock_t) __hw_clock_source_read() / 1000;
}
void force_time(timestamp_t ts)
{
clksrc_high = ts.le.hi;
__hw_clock_source_set(ts.le.lo);
/* some timers might be already expired : process them */
task_trigger_irq(timer_irq);
}
#ifdef CONFIG_CMD_TIMERINFO
void timer_print_info(void)
{
uint64_t t = get_time().val;
uint64_t deadline = (uint64_t)clksrc_high << 32 |
__hw_clock_event_get();
int tskid;
ccprintf("Time: 0x%016lx us\n"
"Deadline: 0x%016lx -> %11.6ld s from now\n"
"Active timers:\n",
t, deadline, deadline - t);
cflush();
for (tskid = 0; tskid < TASK_ID_COUNT; tskid++) {
if (timer_running & (1<<tskid)) {
ccprintf(" Tsk %2d 0x%016lx -> %11.6ld\n", tskid,
timer_deadline[tskid].val,
timer_deadline[tskid].val - t);
cflush();
}
}
}
#else
void timer_print_info(void) { }
#endif
void timer_init(void)
{
const timestamp_t *ts;
int size, version;
BUILD_ASSERT(TASK_ID_COUNT < sizeof(timer_running) * 8);
/* Restore time from before sysjump */
ts = (const timestamp_t *)system_get_jump_tag(TIMER_SYSJUMP_TAG,
&version, &size);
if (ts && version == 1 && size == sizeof(timestamp_t)) {
clksrc_high = ts->le.hi;
timer_irq = __hw_clock_source_init(ts->le.lo);
} else {
clksrc_high = 0;
timer_irq = __hw_clock_source_init(0);
}
}
/* Preserve time across a sysjump */
static void timer_sysjump(void)
{
timestamp_t ts = get_time();
system_add_jump_tag(TIMER_SYSJUMP_TAG, 1, sizeof(ts), &ts);
}
DECLARE_HOOK(HOOK_SYSJUMP, timer_sysjump, HOOK_PRIO_DEFAULT);
static int command_wait(int argc, char **argv)
{
char *e;
int i;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
i = strtoi(argv[1], &e, 0);
if (*e)
return EC_ERROR_PARAM1;
udelay(i * 1000);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(waitms, command_wait,
"msec",
"Busy-wait for msec");
#ifdef CONFIG_CMD_FORCETIME
static int command_force_time(int argc, char **argv)
{
char *e;
timestamp_t new;
if (argc < 3)
return EC_ERROR_PARAM_COUNT;
new.le.hi = strtoi(argv[1], &e, 0);
if (*e)
return EC_ERROR_PARAM1;
new.le.lo = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
ccprintf("Time: 0x%016lx = %.6ld s\n", new.val, new.val);
force_time(new);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(forcetime, command_force_time,
"hi lo",
"Force current time");
#endif
static int command_get_time(int argc, char **argv)
{
timestamp_t ts = get_time();
ccprintf("Time: 0x%016lx = %.6ld s\n", ts.val, ts.val);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(gettime, command_get_time,
NULL,
"Print current time");
#ifdef CONFIG_CMD_TIMERINFO
int command_timer_info(int argc, char **argv)
{
timer_print_info();
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(timerinfo, command_timer_info,
NULL,
"Print timer info");
#endif