Files
OpenCellular/test/nvmem.c
Scott 7184144012 Cr50: NvMem: Connected function stubs in /board/tpm2/NVMem.c
Used #define CONFIG_FLASH_NVMEM to have functions in
/board/tpm2/NVMem.c utlitize on chip Nvmem functions.
On chip NV Memory availability is tied to an internal nvmem
error state which itself only depends on finding at least one
valid partition.

Added nvmem_is_different and nvmem_move functions which were
needed to complete the tpm2 platform interface. In addition,
added unit tests to support these two new functions.

BUG=chrome-os-partner:44745
BRANCH=none
TEST=manual
make runtests TEST_LIST_HOST=nvmem and verify that all tests pass.
Tested with tcg_test utility to test reads/writes using the
command "build/test-tpm2/install/bin/compliance --ntpm
localhost:9883 --select CPCTPM_TC2_3_33_07_01".

Change-Id: I475fdd1331e28ede00f9b674c7bee1536fa9ea48
Signed-off-by: Scott <scollyer@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/346236
Commit-Ready: Scott Collyer <scollyer@chromium.org>
Tested-by: Scott Collyer <scollyer@chromium.org>
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
2016-05-26 18:08:57 -07:00

476 lines
12 KiB
C

/* Copyright 2016 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Test Cr-50 Non-Voltatile memory module
*/
#include "common.h"
#include "console.h"
#include "crc.h"
#include "nvmem.h"
#include "flash.h"
#include "shared_mem.h"
#include "task.h"
#include "test_util.h"
#include "timer.h"
#include "util.h"
#define WRITE_SEGMENT_LEN 200
#define WRITE_READ_SEGMENTS 4
uint32_t nvmem_user_sizes[NVMEM_NUM_USERS] = {
NVMEM_USER_0_SIZE,
NVMEM_USER_1_SIZE,
NVMEM_USER_2_SIZE
};
static uint8_t write_buffer[NVMEM_PARTITION_SIZE];
static uint8_t read_buffer[NVMEM_PARTITION_SIZE];
static int flash_write_fail;
void nvmem_compute_sha(uint8_t *p_buf, int num_bytes, uint8_t *p_sha,
int sha_bytes)
{
uint32_t crc;
uint32_t *p_data;
int n;
crc32_init();
/* Assuming here that buffer is 4 byte aligned and that num_bytes is
* divisible by 4
*/
p_data = (uint32_t *)p_buf;
for (n = 0; n < num_bytes/4; n++)
crc32_hash32(*p_data++);
crc = crc32_result();
p_data = (uint32_t *)p_sha;
*p_data = crc;
}
/* Used to allow/prevent Flash erase/write operations */
int flash_pre_op(void)
{
return flash_write_fail ? EC_ERROR_UNKNOWN : EC_SUCCESS;
}
static int generate_random_data(int offset, int num_bytes)
{
int m, n, limit;
uint32_t r_data;
/* Ensure it will fit in the write buffer */
TEST_ASSERT((num_bytes + offset) <= NVMEM_PARTITION_SIZE);
/* Seed random number sequence */
r_data = prng((uint32_t)clock());
m = 0;
while (m < num_bytes) {
r_data = prng(r_data);
limit = MIN(4, num_bytes - m);
/* No byte alignment assumptions */
for (n = 0; n < limit; n++)
write_buffer[offset + m + n] = (r_data >> (n*8)) & 0xff;
m += limit;
}
return EC_SUCCESS;
}
static int test_write_read(uint32_t offset, uint32_t num_bytes, int user)
{
int ret;
/* Generate source data */
generate_random_data(0, num_bytes);
/* Write source data to NvMem */
ret = nvmem_write(offset, num_bytes, write_buffer, user);
if (ret)
return ret;
nvmem_read(offset, num_bytes, read_buffer, user);
/* Verify memory was written into cache ram buffer */
TEST_ASSERT_ARRAY_EQ(write_buffer, read_buffer, num_bytes);
/* Write to flash */
ret = nvmem_commit();
if (ret != EC_SUCCESS)
return ret;
/* Read from flash */
nvmem_read(offset, num_bytes, read_buffer, user);
/* Verify that write to flash was successful */
TEST_ASSERT_ARRAY_EQ(write_buffer, read_buffer, num_bytes);
return EC_SUCCESS;
}
static int write_full_buffer(uint32_t size, int user)
{
uint32_t offset;
uint32_t len;
int ret;
/* Start at beginning of the user buffer */
offset = 0;
do {
/* User default segment length unless it will exceed */
len = MIN(WRITE_SEGMENT_LEN, size - offset);
/* Generate data for tx buffer */
generate_random_data(offset, len);
/* Write data to Nvmem cache memory */
ret = nvmem_write(offset, len, &write_buffer[offset], user);
if (ret != EC_SUCCESS)
return ret;
/* Write to flash */
ret = nvmem_commit();
if (ret != EC_SUCCESS)
return ret;
/* Adjust starting offset by segment length */
offset += len;
} while (offset < size);
/* Entire flash buffer should be full at this point */
nvmem_read(0, size, read_buffer, user);
/* Verify that write to flash was successful */
TEST_ASSERT_ARRAY_EQ(write_buffer, read_buffer, size);
return EC_SUCCESS;
}
static int test_fully_erased_nvmem(void)
{
/*
* The purpose of this test is to check NvMem intialization when NvMem
* is completely erased (i.e. following SpiFlash write of program). In
* this configuration, nvmem_init() should be able to detect this case
* and configure an initial NvMem partition.
*/
/* Erase full NvMem area */
flash_physical_erase(CONFIG_FLASH_NVMEM_OFFSET,
CONFIG_FLASH_NVMEM_SIZE);
/* Call NvMem initialization function */
return nvmem_init();
}
static int test_configured_nvmem(void)
{
/*
* The purpose of this test is to check nvmem_init() when both
* partitions are configured and valid.
*/
/* Configure all NvMem partitions with starting version number 0 */
nvmem_setup(0);
/* Call NvMem initialization */
return nvmem_init();
}
static int test_corrupt_nvmem(void)
{
uint32_t offset;
int n;
/*
* The purpose of this test is to check nvmem_init() in the case when no
* vailid partition exists (not fully erased and no valid sha). In this
* case, NvMem can't be initialized and should return an error to the
* calling function.
*/
/* Overwrite tags of each parition */
memset(write_buffer, 0, 8);
for (n = 0; n < NVMEM_NUM_PARTITIONS; n++) {
offset = NVMEM_PARTITION_SIZE * n;
flash_physical_write(CONFIG_FLASH_NVMEM_OFFSET + offset, 8,
(const char *)write_buffer);
}
/* In this case nvmem_init is expected to fail */
return !nvmem_init();
}
static int test_write_read_sequence(void)
{
uint32_t offset;
uint32_t length;
int user;
int n;
int ret;
for (user = 0; user < NVMEM_NUM_USERS; user++) {
/* Length for each write/read segment */
length = nvmem_user_sizes[user] / WRITE_READ_SEGMENTS;
/* Start at beginning of user buffer */
offset = 0;
for (n = 0; n < WRITE_READ_SEGMENTS; n++) {
ret = test_write_read(offset, length, user);
if (ret != EC_SUCCESS)
return ret;
/* Adjust offset by segment length */
offset += length;
/* For 1st iteration only, adjust to create stagger */
if (n == 0)
offset -= length / 2;
}
}
return EC_SUCCESS;
}
static int test_write_full_multi(void)
{
int n;
int ret;
/*
* The purpose of this test is to completely fill each user buffer in
* NvMem with random data a segment length at a time. The data written
* to NvMem is saved in write_buffer[] and then can be used to check the
* NvMem writes were successful by reading and then comparing each user
* buffer.
*/
for (n = 0; n < NVMEM_NUM_USERS; n++) {
ret = write_full_buffer(nvmem_user_sizes[n], n);
if (ret != EC_SUCCESS)
return ret;
}
return EC_SUCCESS;
}
static int test_write_fail(void)
{
uint32_t offset = 0;
uint32_t num_bytes = 0x200;
int ret;
/* Do write/read sequence that's expected to be successful */
if (test_write_read(offset, num_bytes, NVMEM_USER_0))
return EC_ERROR_UNKNOWN;
/* Prevent flash erase/write operations */
flash_write_fail = 1;
/* Attempt flash write */
ret = test_write_read(offset, num_bytes, NVMEM_USER_0);
/* Resume normal operation */
flash_write_fail = 0;
/* This test is successful if write attempt failed */
return !ret;
}
static int test_cache_not_available(void)
{
char **p_shared;
int ret;
uint32_t offset = 0;
uint32_t num_bytes = 0x200;
/*
* The purpose of this test is to validate that NvMem writes behave as
* expected when the shared memory buffer (used for cache ram) is and
* isn't available.
*/
/* Do write/read sequence that's expected to be successful */
if (test_write_read(offset, num_bytes, NVMEM_USER_1))
return EC_ERROR_UNKNOWN;
/* Acquire shared memory */
if (shared_mem_acquire(num_bytes, p_shared))
return EC_ERROR_UNKNOWN;
/* Attempt write/read sequence that should fail */
ret = test_write_read(offset, num_bytes, NVMEM_USER_1);
/* Release shared memory */
shared_mem_release(*p_shared);
if (!ret)
return EC_ERROR_UNKNOWN;
/* Write/read sequence should work now */
return test_write_read(offset, num_bytes, NVMEM_USER_1);
}
static int test_buffer_overflow(void)
{
int ret;
int n;
/*
* The purpose of this test is to check that NvMem writes behave
* properly in relation to the defined length of each user buffer. A
* write operation to completely fill the buffer is done first. This
* should pass. Then the same buffer is written to with one extra byte
* and this operation is expected to fail.
*/
/* Do test for each user buffer */
for (n = 0; n < NVMEM_NUM_USERS; n++) {
/* Write full buffer */
ret = write_full_buffer(nvmem_user_sizes[n], n);
if (ret != EC_SUCCESS)
return ret;
/* Attempt to write full buffer plus 1 extra byte */
ret = write_full_buffer(nvmem_user_sizes[n] + 1, n);
if (!ret)
return EC_ERROR_UNKNOWN;
}
/* Test case where user buffer number is valid */
ret = test_write_read(0, 0x100, NVMEM_USER_0);
if (ret != EC_SUCCESS)
return ret;
/* Attempt same write, but with invalid user number */
ret = test_write_read(0, 0x100, NVMEM_NUM_USERS);
if (!ret)
return ret;
return EC_SUCCESS;
}
static int test_move(void)
{
uint32_t len = 0x100;
uint32_t nv1_offset;
uint32_t nv2_offset;
int user = 0;
int n;
int ret;
/*
* The purpose of this test is to check that nvmem_move() behaves
* properly. This test only uses one user buffer as accessing multiple
* user buffers is tested separately. This test uses writes a set of
* test data then test move operations with full overlap, half overlap
* and no overlap. Folliwng these tests, the boundary conditions for
* move operations are checked for the giver user buffer.
*/
nv1_offset = 0;
for (n = 0; n < 3; n++) {
/* Generate Test data */
generate_random_data(nv1_offset, len);
nv2_offset = nv1_offset + (len / 2) * n;
/* Write data to Nvmem cache memory */
nvmem_write(nv1_offset, len, &write_buffer[nv1_offset], user);
nvmem_commit();
/* Test move while data is in cache area */
nvmem_move(nv1_offset, nv2_offset, len, user);
nvmem_read(nv2_offset, len, read_buffer, user);
if (memcmp(write_buffer, read_buffer, len))
return EC_ERROR_UNKNOWN;
ccprintf("Memmove nv1 = 0x%x, nv2 = 0x%x\n",
nv1_offset, nv2_offset);
}
/* Test invalid buffer offsets */
/* Destination offset is equal to length of buffer */
nv1_offset = 0;
nv2_offset = nvmem_user_sizes[user];
/* Attempt to move just 1 byte */
ret = nvmem_move(nv1_offset, nv2_offset, 1, user);
if (!ret)
return EC_ERROR_UNKNOWN;
/* Source offset is equal to length of buffer */
nv1_offset = nvmem_user_sizes[user];
nv2_offset = 0;
/* Attempt to move just 1 byte */
ret = nvmem_move(nv1_offset, nv2_offset, 1, user);
if (!ret)
return EC_ERROR_UNKNOWN;
nv1_offset = 0;
nv2_offset = nvmem_user_sizes[user] - len;
/* Move data chunk from start to end of buffer */
ret = nvmem_move(nv1_offset, nv2_offset,
len, user);
if (ret)
return ret;
/* Attempt to move data chunk 1 byte beyond end of user buffer */
nv1_offset = 0;
nv2_offset = nvmem_user_sizes[user] - len + 1;
ret = nvmem_move(nv1_offset, nv2_offset,
len, user);
if (!ret)
return EC_ERROR_UNKNOWN;
return EC_SUCCESS;
}
static int test_is_different(void)
{
uint32_t len = 0x41;
uint32_t nv1_offset = 0;
int user = 1;
int ret;
/*
* The purpose of this test is to verify nv_is_different(). Test data is
* written to a location in user buffer 1, then a case that's expected
* to pass along with a case that is expected to fail are checked. Next
* the same tests are repeated when the NvMem write is followed by a
* commit operation.
*/
/* Generate test data */
generate_random_data(nv1_offset, len);
/* Write to NvMem cache buffer */
nvmem_write(nv1_offset, len, &write_buffer[nv1_offset], user);
/* Expected to be the same */
ret = nvmem_is_different(nv1_offset, len,
&write_buffer[nv1_offset], user);
if (ret)
return EC_ERROR_UNKNOWN;
/* Expected to be different */
ret = nvmem_is_different(nv1_offset + 1, len,
&write_buffer[nv1_offset], user);
if (!ret)
return EC_ERROR_UNKNOWN;
/* Commit cache buffer and retest */
nvmem_commit();
/* Expected to be the same */
ret = nvmem_is_different(nv1_offset, len,
&write_buffer[nv1_offset], user);
if (ret)
return EC_ERROR_UNKNOWN;
/* Expected to be different */
write_buffer[nv1_offset] ^= 0xff;
ret = nvmem_is_different(nv1_offset, len,
&write_buffer[nv1_offset], user);
if (!ret)
return EC_ERROR_UNKNOWN;
return EC_SUCCESS;
}
static void run_test_setup(void)
{
/* Allow Flash erase/writes */
flash_write_fail = 0;
test_reset();
}
void run_test(void)
{
run_test_setup();
/* Test NvMem Initialization function */
RUN_TEST(test_corrupt_nvmem);
RUN_TEST(test_fully_erased_nvmem);
RUN_TEST(test_configured_nvmem);
/* Test Read/Write/Commit functions */
RUN_TEST(test_write_read_sequence);
RUN_TEST(test_write_full_multi);
/* Test flash erase/write fail case */
RUN_TEST(test_write_fail);
/* Test shared_mem not available case */
RUN_TEST(test_cache_not_available);
/* Test buffer overflow logic */
RUN_TEST(test_buffer_overflow);
/* Test NvMem Move function */
RUN_TEST(test_move);
/* Test NvMem IsDifferent function */
RUN_TEST(test_is_different);
test_print_result();
}