Files
OpenCellular/board/ryu/board.c
Alec Berg feea8de21b usb_charger: move common usb charger code out of board directory
Move common USB charger code out of board directory including
setting VBUS supplier when VBUS changes, and initializing BC1.2
supplier types on init.

This also enables re-enabling of Pericom BC1.2 detection interrupts
when VBUS is changed on all boards that use USB_CHG task.

BUG=chrome-os-partner:42292
BRANCH=none
TEST=make -j buildall. Tested on glados and samus by plugging in
a few different chargers and making sure we charge.

Change-Id: Ib102fbf7a6aace998e6fcb6d35f3c97e5f03f5c2
Signed-off-by: Alec Berg <alecaberg@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/290453
Reviewed-by: Shawn N <shawnn@chromium.org>
Reviewed-by: Rong Chang <rongchang@chromium.org>
2015-08-05 16:50:46 +00:00

527 lines
14 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* ryu board configuration */
#include "adc.h"
#include "adc_chip.h"
#include "atomic.h"
#include "battery.h"
#include "case_closed_debug.h"
#include "charge_manager.h"
#include "charge_ramp.h"
#include "charge_state.h"
#include "charger.h"
#include "common.h"
#include "console.h"
#include "driver/accelgyro_bmi160.h"
#include "ec_version.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "inductive_charging.h"
#include "lid_switch.h"
#include "motion_sense.h"
#include "power.h"
#include "power_button.h"
#include "queue_policies.h"
#include "registers.h"
#include "spi.h"
#include "task.h"
#include "usb.h"
#include "usb_charge.h"
#include "usb_pd.h"
#include "usb_spi.h"
#include "usb-stm32f3.h"
#include "usb-stream.h"
#include "usart-stm32f3.h"
#include "usart_tx_dma.h"
#include "util.h"
#include "pi3usb9281.h"
#define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args)
/* VBUS too low threshold */
#define VBUS_LOW_THRESHOLD_MV 4600
/* Input current error margin */
#define IADP_ERROR_MARGIN_MA 100
static int charge_current_limit;
/*
* PD host event status for host command
* Note: this variable must be aligned on 4-byte boundary because we pass the
* address to atomic_ functions which use assembly to access them.
*/
static struct ec_response_host_event_status host_event_status __aligned(4);
void vbus_evt(enum gpio_signal signal)
{
usb_charger_vbus_change(0, gpio_get_level(signal));
task_wake(TASK_ID_PD);
}
void usb_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0);
}
#include "gpio_list.h"
const void *const usb_strings[] = {
[USB_STR_DESC] = usb_string_desc,
[USB_STR_VENDOR] = USB_STRING_DESC("Google Inc."),
[USB_STR_PRODUCT] = USB_STRING_DESC("Ryu debug"),
[USB_STR_VERSION] = USB_STRING_DESC(CROS_EC_VERSION32),
[USB_STR_CONSOLE_NAME] = USB_STRING_DESC("EC_PD"),
[USB_STR_AP_STREAM_NAME] = USB_STRING_DESC("AP"),
};
BUILD_ASSERT(ARRAY_SIZE(usb_strings) == USB_STR_COUNT);
/*
* Define AP console forwarding queue and associated USART and USB
* stream endpoints.
*/
static struct usart_config const ap_usart;
struct usb_stream_config const ap_usb;
static struct queue const ap_usart_to_usb = QUEUE_DIRECT(64, uint8_t,
ap_usart.producer,
ap_usb.consumer);
static struct queue const ap_usb_to_usart = QUEUE_DIRECT(64, uint8_t,
ap_usb.producer,
ap_usart.consumer);
static struct usart_tx_dma const ap_usart_tx_dma =
USART_TX_DMA(STM32_DMAC_USART1_TX, 16);
static struct usart_config const ap_usart =
USART_CONFIG(usart1_hw,
usart_rx_interrupt,
ap_usart_tx_dma.usart_tx,
115200,
ap_usart_to_usb,
ap_usb_to_usart);
#define AP_USB_STREAM_RX_SIZE 16
#define AP_USB_STREAM_TX_SIZE 16
USB_STREAM_CONFIG(ap_usb,
USB_IFACE_AP_STREAM,
USB_STR_AP_STREAM_NAME,
USB_EP_AP_STREAM,
AP_USB_STREAM_RX_SIZE,
AP_USB_STREAM_TX_SIZE,
ap_usb_to_usart,
ap_usart_to_usb)
struct pi3usb9281_config pi3usb9281_chips[] = {
{
.i2c_port = I2C_PORT_PERICOM,
.mux_lock = NULL,
}
};
BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) ==
CONFIG_USB_SWITCH_PI3USB9281_CHIP_COUNT);
/* Initialize board. */
static void board_init(void)
{
int i;
/* Enable pericom BC1.2 interrupts. */
gpio_enable_interrupt(GPIO_USBC_BC12_INT_L);
/*
* Initialize AP console forwarding USART and queues.
*/
queue_init(&ap_usart_to_usb);
queue_init(&ap_usb_to_usart);
usart_init(&ap_usart);
/*
* Enable CC lines after all GPIO have been initialized. Note, it is
* important that this is enabled after the CC_DEVICE_ODL lines are
* set low to specify device mode.
*/
gpio_set_level(GPIO_USBC_CC_EN, 1);
/* Enable interrupts on VBUS transitions. */
gpio_enable_interrupt(GPIO_CHGR_ACOK);
/* Enable interrupts from BMI160 sensor. */
gpio_enable_interrupt(GPIO_ACC_IRQ1);
if (board_has_spi_sensors()) {
for (i = MOTIONSENSE_TYPE_ACCEL;
i <= MOTIONSENSE_TYPE_MAG; i++) {
motion_sensors[i].addr = BMI160_SET_SPI_ADDRESS(1);
}
/* SPI sensors: put back the GPIO in its expected state */
gpio_set_level(GPIO_SPI3_NSS, 1);
/* Enable SPI for BMI160 */
gpio_config_module(MODULE_SPI_MASTER, 1);
/* Set all four SPI3 pins to high speed */
/* pins C10/C11/C12 */
STM32_GPIO_OSPEEDR(GPIO_C) |= 0x03f00000;
/* pin A4 */
STM32_GPIO_OSPEEDR(GPIO_A) |= 0x00000300;
/* Enable clocks to SPI3 module */
STM32_RCC_APB1ENR |= STM32_RCC_PB1_SPI3;
/* Reset SPI3 */
STM32_RCC_APB1RSTR |= STM32_RCC_PB1_SPI3;
STM32_RCC_APB1RSTR &= ~STM32_RCC_PB1_SPI3;
spi_enable(CONFIG_SPI_ACCEL_PORT, 1);
CPRINTS("Board using SPI sensors");
} else { /* I2C sensors on rev v6/7/8 */
CPRINTS("Board using I2C sensors");
}
}
DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT);
static void board_startup_key_combo(void)
{
int vold = !gpio_get_level(GPIO_BTN_VOLD_L);
int volu = !gpio_get_level(GPIO_BTN_VOLU_L);
int pwr = power_button_signal_asserted();
/*
* Determine recovery mode is requested by the power and
* voldown buttons being pressed (while device was off).
*/
if (pwr && vold && !volu) {
host_set_single_event(EC_HOST_EVENT_KEYBOARD_RECOVERY);
CPRINTS("> RECOVERY mode");
}
/*
* Determine fastboot mode is requested by the power and
* voldown buttons being pressed (while device was off).
*/
if (pwr && volu && !vold) {
host_set_single_event(EC_HOST_EVENT_KEYBOARD_FASTBOOT);
CPRINTS("> FASTBOOT mode");
}
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_startup_key_combo, HOOK_PRIO_DEFAULT);
/* power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
{GPIO_AP_HOLD, 1, "AP_HOLD"},
{GPIO_AP_IN_SUSPEND, 1, "SUSPEND_ASSERTED"},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
/* ADC channels */
const struct adc_t adc_channels[] = {
/* Vbus sensing. Converted to mV, /10 voltage divider. */
[ADC_VBUS] = {"VBUS", 30000, 4096, 0, STM32_AIN(0)},
/* USB PD CC lines sensing. Converted to mV (3000mV/4096). */
[ADC_CC1_PD] = {"CC1_PD", 3000, 4096, 0, STM32_AIN(1)},
[ADC_CC2_PD] = {"CC2_PD", 3000, 4096, 0, STM32_AIN(3)},
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
/* I2C ports */
const struct i2c_port_t i2c_ports[] = {
{"master", I2C_PORT_MASTER, 100,
GPIO_MASTER_I2C_SCL, GPIO_MASTER_I2C_SDA},
{"slave", I2C_PORT_SLAVE, 1000,
GPIO_SLAVE_I2C_SCL, GPIO_SLAVE_I2C_SDA},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
/* SPI devices */
const struct spi_device_t spi_devices[] = {
{ CONFIG_SPI_FLASH_PORT, 0, GPIO_SPI_FLASH_NSS},
{ CONFIG_SPI_ACCEL_PORT, 1, GPIO_SPI3_NSS }
};
const unsigned int spi_devices_used = ARRAY_SIZE(spi_devices);
/* Sensor mutex */
static struct mutex g_mutex;
/* Matrix to rotate sensor vector into standard reference frame */
const matrix_3x3_t accelgyro_standard_ref = {
{FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(-1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
const matrix_3x3_t mag_standard_ref = {
{ 0, FLOAT_TO_FP(-1), 0},
{FLOAT_TO_FP(-1), 0, 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
struct motion_sensor_t motion_sensors[] = {
/*
* Note: bmi160: supports accelerometer and gyro sensor
* Requirement: accelerometer sensor must init before gyro sensor
* DO NOT change the order of the following table.
*/
{.name = "Accel",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_mutex,
.drv_data = &g_bmi160_data,
.addr = BMI160_ADDR0,
.rot_standard_ref = &accelgyro_standard_ref,
.default_config = {
.odr = 100000,
.range = 8, /* g */
.ec_rate = SUSPEND_SAMPLING_INTERVAL,
}
},
{.name = "Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_mutex,
.drv_data = &g_bmi160_data,
.addr = BMI160_ADDR0,
.rot_standard_ref = &accelgyro_standard_ref,
.default_config = {
.odr = 0,
.range = 1000, /* dps */
.ec_rate = MAX_MOTION_SENSE_WAIT_TIME,
}
},
{.name = "Mag",
.active_mask = SENSOR_ACTIVE_S0_S3,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_MAG,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_mutex,
.drv_data = &g_bmi160_data,
.addr = BMI160_ADDR0,
.rot_standard_ref = &mag_standard_ref,
.default_config = {
.odr = 0,
.range = 1 << 11, /* 16LSB / uT */
.ec_rate = MAX_MOTION_SENSE_WAIT_TIME,
}
},
};
const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
int extpower_is_present(void)
{
return gpio_get_level(GPIO_CHGR_ACOK);
}
void usb_board_connect(void)
{
gpio_set_level(GPIO_USB_PU_EN_L, 0);
}
void usb_board_disconnect(void)
{
gpio_set_level(GPIO_USB_PU_EN_L, 1);
}
/**
* Set active charge port -- only one port can be active at a time.
*
* @param charge_port Charge port to enable.
*
* Returns EC_SUCCESS if charge port is accepted and made active,
* EC_ERROR_* otherwise.
*/
int board_set_active_charge_port(int charge_port)
{
/* check if we are source vbus on that port */
int src = gpio_get_level(GPIO_CHGR_OTG);
if (charge_port >= 0 && charge_port < CONFIG_USB_PD_PORT_COUNT && src) {
CPRINTS("Port %d is not a sink, skipping enable", charge_port);
return EC_ERROR_INVAL;
}
/* Enable/disable charging */
gpio_set_level(GPIO_USBC_CHARGE_EN_L, charge_port == CHARGE_PORT_NONE);
return EC_SUCCESS;
}
/**
* Set the charge limit based upon desired maximum.
*
* @param charge_ma Desired charge limit (mA).
*/
void board_set_charge_limit(int charge_ma)
{
int rv;
charge_current_limit = MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT);
rv = charge_set_input_current_limit(charge_current_limit);
if (rv < 0)
CPRINTS("Failed to set input current limit for PD");
}
/**
* Return whether ramping is allowed for given supplier
*/
int board_is_ramp_allowed(int supplier)
{
return supplier == CHARGE_SUPPLIER_BC12_DCP ||
supplier == CHARGE_SUPPLIER_BC12_SDP ||
supplier == CHARGE_SUPPLIER_BC12_CDP ||
supplier == CHARGE_SUPPLIER_PROPRIETARY;
}
/**
* Return the maximum allowed input current
*/
int board_get_ramp_current_limit(int supplier, int sup_curr)
{
switch (supplier) {
case CHARGE_SUPPLIER_BC12_DCP:
return 2400;
case CHARGE_SUPPLIER_BC12_SDP:
return 1000;
case CHARGE_SUPPLIER_BC12_CDP:
return 2400;
case CHARGE_SUPPLIER_PROPRIETARY:
return sup_curr;
default:
return 500;
}
}
/* Send host event up to AP */
void pd_send_host_event(int mask)
{
/* mask must be set */
if (!mask)
return;
atomic_or(&(host_event_status.status), mask);
/* interrupt the AP */
host_set_single_event(EC_HOST_EVENT_PD_MCU);
}
/**
* Enable and disable SPI for case closed debugging. This forces the AP into
* reset while SPI is enabled, thus preventing contention on the SPI interface.
*/
void usb_spi_board_enable(struct usb_spi_config const *config)
{
/* Place AP into reset */
gpio_set_level(GPIO_PMIC_WARM_RESET_L, 0);
/* Configure SPI GPIOs */
gpio_config_module(MODULE_SPI_FLASH, 1);
gpio_set_flags(SPI_FLASH_DEVICE->gpio_cs, GPIO_OUT_HIGH);
/* Set all four SPI pins to high speed */
/* pins B10/B14/B15 and B9 */
STM32_GPIO_OSPEEDR(GPIO_B) |= 0xf03c0000;
/* Enable clocks to SPI2 module */
STM32_RCC_APB1ENR |= STM32_RCC_PB1_SPI2;
/* Reset SPI2 */
STM32_RCC_APB1RSTR |= STM32_RCC_PB1_SPI2;
STM32_RCC_APB1RSTR &= ~STM32_RCC_PB1_SPI2;
/* Enable SPI LDO to power the flash chip */
gpio_set_level(GPIO_VDDSPI_EN, 1);
spi_enable(CONFIG_SPI_FLASH_PORT, 1);
}
void usb_spi_board_disable(struct usb_spi_config const *config)
{
spi_enable(CONFIG_SPI_FLASH_PORT, 0);
/* Disable SPI LDO */
gpio_set_level(GPIO_VDDSPI_EN, 0);
/* Disable clocks to SPI2 module */
STM32_RCC_APB1ENR &= ~STM32_RCC_PB1_SPI2;
/* Release SPI GPIOs */
gpio_config_module(MODULE_SPI_FLASH, 0);
gpio_set_flags(SPI_FLASH_DEVICE->gpio_cs, GPIO_INPUT);
/* Release AP from reset */
gpio_set_level(GPIO_PMIC_WARM_RESET_L, 1);
}
int board_get_version(void)
{
static int ver;
if (!ver) {
/*
* read the board EC ID on the tristate strappings
* using ternary encoding: 0 = 0, 1 = 1, Hi-Z = 2
*/
uint8_t id0 = 0, id1 = 0;
gpio_set_flags(GPIO_BOARD_ID0, GPIO_PULL_DOWN | GPIO_INPUT);
gpio_set_flags(GPIO_BOARD_ID1, GPIO_PULL_DOWN | GPIO_INPUT);
usleep(100);
id0 = gpio_get_level(GPIO_BOARD_ID0);
id1 = gpio_get_level(GPIO_BOARD_ID1);
gpio_set_flags(GPIO_BOARD_ID0, GPIO_PULL_UP | GPIO_INPUT);
gpio_set_flags(GPIO_BOARD_ID1, GPIO_PULL_UP | GPIO_INPUT);
usleep(100);
id0 = gpio_get_level(GPIO_BOARD_ID0) && !id0 ? 2 : id0;
id1 = gpio_get_level(GPIO_BOARD_ID1) && !id1 ? 2 : id1;
gpio_set_flags(GPIO_BOARD_ID0, GPIO_INPUT);
gpio_set_flags(GPIO_BOARD_ID1, GPIO_INPUT);
ver = id1 * 3 + id0;
CPRINTS("Board ID = %d", ver);
}
return ver;
}
int board_has_spi_sensors(void)
{
/*
* boards version 6 / 7 / 8 have an I2C bus to sensors.
* board version 0+ has a SPI bus to sensors
*/
int ver = board_get_version();
return (ver < 6);
}
/****************************************************************************/
/* Host commands */
static int host_event_status_host_cmd(struct host_cmd_handler_args *args)
{
struct ec_response_host_event_status *r = args->response;
/* Read and clear the host event status to return to AP */
r->status = atomic_read_clear(&(host_event_status.status));
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_PD_HOST_EVENT_STATUS, host_event_status_host_cmd,
EC_VER_MASK(0));