Files
OpenCellular/common/motion_sense.c
Gwendal Grignou 59138ad097 motion_sense: Allow multiple IRQ based sensors
Add a mask of custom events reserved for IRQ based sensors.
Copy data from raw_xzy to xyz while filling the FIFO
when FIFO is enabled.

BRANCH=smaug
TEST=Test with si1141 driver, check irq works for both driver.
BUG=chrome-os-partner:32829

Change-Id: I5e106df0c121e3bf1385f635195717395235ccc3
Signed-off-by: Gwendal Grignou <gwendal@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/291334
Reviewed-by: Sheng-liang Song <ssl@chromium.org>
2015-08-22 09:31:45 +00:00

1182 lines
31 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Motion sense module to read from various motion sensors. */
#include "accelgyro.h"
#include "atomic.h"
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gesture.h"
#include "hooks.h"
#include "host_command.h"
#include "hwtimer.h"
#include "lid_angle.h"
#include "math_util.h"
#include "mkbp_event.h"
#include "motion_sense.h"
#include "motion_lid.h"
#include "power.h"
#include "queue.h"
#include "timer.h"
#include "task.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_MOTION_SENSE, outstr)
#define CPRINTS(format, args...) cprints(CC_MOTION_SENSE, format, ## args)
#define CPRINTF(format, args...) cprintf(CC_MOTION_SENSE, format, ## args)
/*
* Sampling interval for measuring acceleration and calculating lid angle.
*/
unsigned accel_interval;
#ifdef CONFIG_CMD_ACCEL_INFO
static int accel_disp;
#endif
#define SENSOR_EC_RATE(_sensor) \
(sensor_active == SENSOR_ACTIVE_S0 ? \
(_sensor)->runtime_config.ec_rate : \
(_sensor)->default_config.ec_rate)
#define SENSOR_ACTIVE(_sensor) (sensor_active & (_sensor)->active_mask)
/* Minimal amount of time since last collection before triggering a new one */
#define SENSOR_EC_RATE_THRES(_sensor) \
(SENSOR_EC_RATE(_sensor) * 9 / 10)
/*
* Mutex to protect sensor values between host command task and
* motion sense task:
* When we process CMD_DUMP, we want to be sure the motion sense
* task is not updating the sensor values at the same time.
*/
static struct mutex g_sensor_mutex;
/*
* Current power level (S0, S3, S5, ...)
*/
enum chipset_state_mask sensor_active;
#ifdef CONFIG_ACCEL_FIFO
struct queue motion_sense_fifo = QUEUE_NULL(CONFIG_ACCEL_FIFO,
struct ec_response_motion_sensor_data);
static int motion_sense_fifo_lost;
void motion_sense_fifo_add_unit(struct ec_response_motion_sensor_data *data,
struct motion_sensor_t *sensor,
int valid_data)
{
struct ec_response_motion_sensor_data vector;
int i;
data->sensor_num = (sensor - motion_sensors);
mutex_lock(&g_sensor_mutex);
if (queue_space(&motion_sense_fifo) == 0) {
queue_remove_unit(&motion_sense_fifo, &vector);
motion_sense_fifo_lost++;
motion_sensors[vector.sensor_num].lost++;
if (vector.flags & MOTIONSENSE_SENSOR_FLAG_FLUSH)
CPRINTS("Lost flush for sensor %d", vector.sensor_num);
}
for (i = 0; i < valid_data; i++)
sensor->xyz[i] = data->data[i];
mutex_unlock(&g_sensor_mutex);
queue_add_unit(&motion_sense_fifo, data);
}
static inline void motion_sense_insert_flush(struct motion_sensor_t *sensor)
{
struct ec_response_motion_sensor_data vector;
vector.flags = MOTIONSENSE_SENSOR_FLAG_FLUSH |
MOTIONSENSE_SENSOR_FLAG_TIMESTAMP;
vector.timestamp = __hw_clock_source_read();
motion_sense_fifo_add_unit(&vector, sensor, 0);
}
static inline void motion_sense_insert_timestamp(void)
{
struct ec_response_motion_sensor_data vector;
vector.flags = MOTIONSENSE_SENSOR_FLAG_TIMESTAMP;
vector.timestamp = __hw_clock_source_read();
motion_sense_fifo_add_unit(&vector, motion_sensors, 0);
}
static void motion_sense_get_fifo_info(
struct ec_response_motion_sense_fifo_info *fifo_info)
{
fifo_info->size = motion_sense_fifo.buffer_units;
mutex_lock(&g_sensor_mutex);
fifo_info->count = queue_count(&motion_sense_fifo);
fifo_info->total_lost = motion_sense_fifo_lost;
mutex_unlock(&g_sensor_mutex);
fifo_info->timestamp = __hw_clock_source_read();
}
#endif
/*
* motion_sense_set_accel_interval
*
* Set the wake up interval for the motion sense thread.
* It is set to the highest frequency one of the sensors need to be polled at.
*
* driving_sensor: In S0, indicates which sensor has its EC sampling rate
* changed. In S3, it is hard coded, so in S3 driving_sensor should be NULL.
* data: The new ec sampling rate for this sensor.
*
* Note: Not static to be tested.
*/
int motion_sense_set_accel_interval(
struct motion_sensor_t *driving_sensor,
unsigned data)
{
int i;
struct motion_sensor_t *sensor;
if (driving_sensor)
driving_sensor->runtime_config.ec_rate = data;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
if (sensor == driving_sensor)
continue;
/*
* If the sensor is sleeping, no need to check it periodicaly.
*/
if ((sensor->runtime_config.odr == 0) ||
(sensor->state != SENSOR_INITIALIZED))
continue;
if (SENSOR_EC_RATE(sensor) < data)
data = SENSOR_EC_RATE(sensor);
}
if (accel_interval > data) {
accel_interval = data;
/*
* Wake up the motion sense task: we want to sensor task to take
* in account the new period right away.
*/
task_wake(TASK_ID_MOTIONSENSE);
} else {
accel_interval = data;
}
return data;
}
static inline void motion_sense_init(struct motion_sensor_t *sensor)
{
int ret, cnt = 3;
/* Initialize accelerometers. */
do {
ret = sensor->drv->init(sensor);
} while ((ret != EC_SUCCESS) && (--cnt > 0));
if (ret != EC_SUCCESS) {
sensor->state = SENSOR_INIT_ERROR;
} else {
timestamp_t ts = get_time();
sensor->state = SENSOR_INITIALIZED;
sensor->last_collection = ts.val;
}
}
/*
* motion_sense_switch_unused_sensor
*
* Suspend all sensors that are not needed.
* Mark them as unitialized, they wll lose power and
* need to be initialized again.
*/
static void motion_sense_switch_unused_sensor(void)
{
int i;
struct motion_sensor_t *sensor;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
if ((sensor->state == SENSOR_INITIALIZED) &&
!SENSOR_ACTIVE(sensor)) {
sensor->drv->set_data_rate(sensor, 0, 0);
sensor->state = SENSOR_NOT_INITIALIZED;
}
}
motion_sense_set_accel_interval(NULL, MAX_MOTION_SENSE_WAIT_TIME);
}
static void motion_sense_shutdown(void)
{
int i;
struct motion_sensor_t *sensor;
sensor_active = SENSOR_ACTIVE_S5;
motion_sense_switch_unused_sensor();
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
/* Forget about changes made by the AP */
memcpy(&sensor->runtime_config, &sensor->default_config,
sizeof(sensor->runtime_config));
}
}
DECLARE_HOOK(HOOK_CHIPSET_SHUTDOWN, motion_sense_shutdown,
MOTION_SENSE_HOOK_PRIO);
static void motion_sense_suspend(void)
{
/*
* If we are comming from S5, don't enter suspend:
* We will go in SO almost immediately.
*/
if (sensor_active == SENSOR_ACTIVE_S5)
return;
sensor_active = SENSOR_ACTIVE_S3;
motion_sense_switch_unused_sensor();
}
DECLARE_HOOK(HOOK_CHIPSET_SUSPEND, motion_sense_suspend,
MOTION_SENSE_HOOK_PRIO);
static void motion_sense_resume(void)
{
int i;
struct motion_sensor_t *sensor;
sensor_active = SENSOR_ACTIVE_S0;
for (i = 0; i < motion_sensor_count; i++) {
sensor = &motion_sensors[i];
/* Initialize or just back the odr previously set. */
if (sensor->state == SENSOR_INITIALIZED)
sensor->drv->set_data_rate(sensor,
sensor->runtime_config.odr, 1);
else
motion_sense_init(sensor);
}
motion_sense_set_accel_interval(NULL, MAX_MOTION_SENSE_WAIT_TIME);
}
DECLARE_HOOK(HOOK_CHIPSET_RESUME, motion_sense_resume,
MOTION_SENSE_HOOK_PRIO);
static void motion_sense_startup(void)
{
int i;
struct motion_sensor_t *sensor;
sensor_active = SENSOR_ACTIVE_S5;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
sensor->state = SENSOR_NOT_INITIALIZED;
memcpy(&sensor->runtime_config, &sensor->default_config,
sizeof(sensor->runtime_config));
}
motion_sense_set_accel_interval(NULL, MAX_MOTION_SENSE_WAIT_TIME);
/* If the AP is already in S0, call the resume hook now.
* We may initialize the sensor 2 times (once in RO, anoter time in RW),
* but it may be necessary if the init sequence has changed.
*/
if (chipset_in_state(SENSOR_ACTIVE_S0_S3))
motion_sense_suspend();
if (chipset_in_state(SENSOR_ACTIVE_S0))
motion_sense_resume();
}
DECLARE_HOOK(HOOK_INIT, motion_sense_startup,
MOTION_SENSE_HOOK_PRIO);
/* Write to LPC status byte to represent that accelerometers are present. */
static inline void set_present(uint8_t *lpc_status)
{
*lpc_status |= EC_MEMMAP_ACC_STATUS_PRESENCE_BIT;
}
#ifdef CONFIG_LPC
/* Update/Write LPC data */
static inline void update_sense_data(uint8_t *lpc_status,
uint16_t *lpc_data, int *psample_id)
{
int i;
struct motion_sensor_t *sensor;
/*
* Set the busy bit before writing the sensor data. Increment
* the counter and clear the busy bit after writing the sensor
* data. On the host side, the host needs to make sure the busy
* bit is not set and that the counter remains the same before
* and after reading the data.
*/
*lpc_status |= EC_MEMMAP_ACC_STATUS_BUSY_BIT;
/*
* Copy sensor data to shared memory. Note that this code
* assumes little endian, which is what the host expects. Also,
* note that we share the lid angle calculation with host only
* for debugging purposes. The EC lid angle is an approximation
* with un-calibrated accels. The AP calculates a separate,
* more accurate lid angle.
*/
#ifdef CONFIG_LID_ANGLE
lpc_data[0] = motion_lid_get_angle();
#else
lpc_data[0] = LID_ANGLE_UNRELIABLE;
#endif
/* Assumptions on the list of sensors */
for (i = 0; i < MIN(motion_sensor_count, 3); i++) {
sensor = &motion_sensors[i];
lpc_data[1+3*i] = sensor->xyz[X];
lpc_data[2+3*i] = sensor->xyz[Y];
lpc_data[3+3*i] = sensor->xyz[Z];
}
/*
* Increment sample id and clear busy bit to signal we finished
* updating data.
*/
*psample_id = (*psample_id + 1) &
EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
*lpc_status = EC_MEMMAP_ACC_STATUS_PRESENCE_BIT | *psample_id;
}
#endif
static int motion_sense_read(struct motion_sensor_t *sensor)
{
if (sensor->state != SENSOR_INITIALIZED)
return EC_ERROR_UNKNOWN;
if (sensor->runtime_config.odr == 0)
return EC_ERROR_NOT_POWERED;
/* Read all raw X,Y,Z accelerations. */
return sensor->drv->read(sensor, sensor->raw_xyz);
}
static int motion_sense_process(struct motion_sensor_t *sensor,
uint32_t event,
const timestamp_t *ts,
int *flush_needed)
{
int ret = EC_SUCCESS;
#ifdef CONFIG_ACCEL_INTERRUPTS
if ((event & TASK_EVENT_MOTION_INTERRUPT_MASK) &&
(sensor->drv->irq_handler != NULL))
sensor->drv->irq_handler(sensor, event);
#endif
#ifdef CONFIG_ACCEL_FIFO
if (sensor->drv->load_fifo != NULL) {
/* Load fifo is filling raw_xyz sensor vector */
sensor->drv->load_fifo(sensor);
} else if (ts->val - sensor->last_collection >=
SENSOR_EC_RATE_THRES(sensor)) {
struct ec_response_motion_sensor_data vector;
sensor->last_collection = ts->val;
ret = motion_sense_read(sensor);
if (ret == EC_SUCCESS) {
vector.flags = 0;
vector.data[X] = sensor->raw_xyz[X];
vector.data[Y] = sensor->raw_xyz[Y];
vector.data[Z] = sensor->raw_xyz[Z];
motion_sense_fifo_add_unit(&vector, sensor, 3);
}
} else {
ret = EC_ERROR_BUSY;
}
if (event & TASK_EVENT_MOTION_FLUSH_PENDING) {
int flush_pending;
flush_pending = atomic_read_clear(&sensor->flush_pending);
for (; flush_pending > 0; flush_pending--) {
*flush_needed = 1;
motion_sense_insert_flush(sensor);
}
}
#else
if (ts->val - sensor->last_collection >=
SENSOR_EC_RATE_THRES(sensor)) {
sensor->last_collection = ts->val;
/* Get latest data for local calculation */
ret = motion_sense_read(sensor);
} else {
ret = EC_ERROR_BUSY;
}
if (ret == EC_SUCCESS) {
mutex_lock(&g_sensor_mutex);
memcpy(sensor->xyz, sensor->raw_xyz, sizeof(sensor->xyz));
mutex_unlock(&g_sensor_mutex);
}
#endif
return ret;
}
/*
* Motion Sense Task
* Requirement: motion_sensors[] are defined in board.c file.
* Two (minimium) Accelerometers:
* 1 in the A/B(lid, display) and 1 in the C/D(base, keyboard)
* Gyro Sensor (optional)
*/
void motion_sense_task(void)
{
int i, ret, wait_us, fifo_flush_needed = 0;
timestamp_t ts_begin_task, ts_end_task;
uint32_t event = 0;
uint16_t ready_status;
struct motion_sensor_t *sensor;
#ifdef CONFIG_LID_ANGLE
const uint16_t lid_angle_sensors = ((1 << CONFIG_LID_ANGLE_SENSOR_BASE)|
(1 << CONFIG_LID_ANGLE_SENSOR_LID));
#endif
#ifdef CONFIG_ACCEL_FIFO
timestamp_t ts_last_int;
#endif
#ifdef CONFIG_LPC
int sample_id = 0;
uint8_t *lpc_status;
uint16_t *lpc_data;
lpc_status = host_get_memmap(EC_MEMMAP_ACC_STATUS);
lpc_data = (uint16_t *)host_get_memmap(EC_MEMMAP_ACC_DATA);
set_present(lpc_status);
#endif
#ifdef CONFIG_ACCEL_FIFO
ts_last_int = get_time();
#endif
do {
ts_begin_task = get_time();
ready_status = 0;
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
/* if the sensor is active in the current power state */
if (SENSOR_ACTIVE(sensor)) {
if (sensor->state != SENSOR_INITIALIZED) {
CPRINTS("S%d active, not initalized",
sensor);
continue;
}
ts_begin_task = get_time();
ret = motion_sense_process(sensor, event,
&ts_begin_task,
&fifo_flush_needed);
if (ret != EC_SUCCESS)
continue;
ready_status |= (1 << i);
}
}
#ifdef CONFIG_GESTURE_DETECTION
/* Run gesture recognition engine */
gesture_calc();
#endif
#ifdef CONFIG_LID_ANGLE
/*
* Check to see that the sensors required for lid angle
* calculation are ready.
*/
ready_status &= lid_angle_sensors;
if (ready_status == lid_angle_sensors)
motion_lid_calc();
#endif
#ifdef CONFIG_CMD_ACCEL_INFO
if (accel_disp) {
CPRINTF("[%T event 0x%08x ", event);
for (i = 0; i < motion_sensor_count; ++i) {
sensor = &motion_sensors[i];
CPRINTF("%s=%-5d, %-5d, %-5d ", sensor->name,
sensor->xyz[X],
sensor->xyz[Y],
sensor->xyz[Z]);
}
#ifdef CONFIG_LID_ANGLE
CPRINTF("a=%-4d", motion_lid_get_angle());
#endif
CPRINTF("]\n");
}
#endif
#ifdef CONFIG_LPC
update_sense_data(lpc_status, lpc_data, &sample_id);
#endif
ts_end_task = get_time();
#ifdef CONFIG_ACCEL_FIFO
/*
* If ODR of any sensor changed, insert a timestamp to be ease
* calculation of each events.
*/
if (event & TASK_EVENT_MOTION_ODR_CHANGE)
motion_sense_insert_timestamp();
/*
* Ask the host to flush the queue if
* - a flush event has been queued.
* - the queue is almost full,
* - we haven't done it for a while.
*/
if (fifo_flush_needed ||
queue_space(&motion_sense_fifo) < CONFIG_ACCEL_FIFO_THRES ||
(ts_end_task.val - ts_last_int.val) > accel_interval) {
if (!fifo_flush_needed)
motion_sense_insert_timestamp();
fifo_flush_needed = 0;
ts_last_int = ts_end_task;
#ifdef CONFIG_MKBP_EVENT
/*
* We don't currently support wake up sensor.
* When we do, add per sensor test to know
* when sending the event.
*/
if (sensor_active == SENSOR_ACTIVE_S0)
mkbp_send_event(EC_MKBP_EVENT_SENSOR_FIFO);
#endif
}
#endif
/* Delay appropriately to keep sampling time consistent. */
wait_us = accel_interval -
(ts_end_task.val - ts_begin_task.val);
/*
* Guarantee some minimum delay to allow other lower priority
* tasks to run.
*/
if (wait_us < MIN_MOTION_SENSE_WAIT_TIME)
wait_us = MIN_MOTION_SENSE_WAIT_TIME;
} while ((event = task_wait_event(wait_us)));
}
#ifdef CONFIG_ACCEL_FIFO
static int motion_sense_get_next_event(uint8_t *out)
{
union ec_response_get_next_data *data =
(union ec_response_get_next_data *)out;
/* out is not padded. It has one byte for the event type */
motion_sense_get_fifo_info(&data->sensor_fifo.info);
return sizeof(data->sensor_fifo);
}
DECLARE_EVENT_SOURCE(EC_MKBP_EVENT_SENSOR_FIFO, motion_sense_get_next_event);
#endif
/*****************************************************************************/
/* Host commands */
/* Function to map host sensor IDs to motion sensor. */
static struct motion_sensor_t
*host_sensor_id_to_motion_sensor(int host_id)
{
struct motion_sensor_t *sensor;
if (host_id >= motion_sensor_count)
return NULL;
sensor = &motion_sensors[host_id];
/* if sensor is powered and initialized, return match */
if (SENSOR_ACTIVE(sensor) && (sensor->state == SENSOR_INITIALIZED))
return sensor;
/* If no match then the EC currently doesn't support ID received. */
return NULL;
}
static int host_cmd_motion_sense(struct host_cmd_handler_args *args)
{
const struct ec_params_motion_sense *in = args->params;
struct ec_response_motion_sense *out = args->response;
struct motion_sensor_t *sensor;
int i, data, ret = EC_RES_INVALID_PARAM, reported;
switch (in->cmd) {
case MOTIONSENSE_CMD_DUMP:
out->dump.module_flags =
(*(host_get_memmap(EC_MEMMAP_ACC_STATUS)) &
EC_MEMMAP_ACC_STATUS_PRESENCE_BIT) ?
MOTIONSENSE_MODULE_FLAG_ACTIVE : 0;
out->dump.sensor_count = motion_sensor_count;
args->response_size = sizeof(out->dump);
reported = MIN(motion_sensor_count, in->dump.max_sensor_count);
mutex_lock(&g_sensor_mutex);
for (i = 0; i < reported; i++) {
sensor = &motion_sensors[i];
out->dump.sensor[i].flags =
MOTIONSENSE_SENSOR_FLAG_PRESENT;
/* casting from int to s16 */
out->dump.sensor[i].data[X] = sensor->xyz[X];
out->dump.sensor[i].data[Y] = sensor->xyz[Y];
out->dump.sensor[i].data[Z] = sensor->xyz[Z];
}
mutex_unlock(&g_sensor_mutex);
args->response_size += reported *
sizeof(struct ec_response_motion_sensor_data);
break;
case MOTIONSENSE_CMD_DATA:
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
out->data.flags = 0;
mutex_lock(&g_sensor_mutex);
out->data.data[X] = sensor->xyz[X];
out->data.data[Y] = sensor->xyz[Y];
out->data.data[Z] = sensor->xyz[Z];
mutex_unlock(&g_sensor_mutex);
args->response_size = sizeof(out->data);
break;
case MOTIONSENSE_CMD_INFO:
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
out->info.type = sensor->type;
out->info.location = sensor->location;
out->info.chip = sensor->chip;
args->response_size = sizeof(out->info);
break;
case MOTIONSENSE_CMD_EC_RATE:
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/*
* Set new sensor sampling rate when AP is on, if the data arg
* has a value.
*/
if (in->ec_rate.data != EC_MOTION_SENSE_NO_VALUE) {
/* Bound the new sampling rate. */
motion_sense_set_accel_interval(
sensor,
MAX(in->ec_rate.data * MSEC,
MIN_MOTION_SENSE_WAIT_TIME));
}
out->ec_rate.ret = sensor->runtime_config.ec_rate / MSEC;
args->response_size = sizeof(out->ec_rate);
break;
case MOTIONSENSE_CMD_SENSOR_ODR:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new data rate if the data arg has a value. */
if (in->sensor_odr.data != EC_MOTION_SENSE_NO_VALUE) {
if (sensor->drv->set_data_rate(sensor,
in->sensor_odr.data,
in->sensor_odr.roundup)
!= EC_SUCCESS) {
CPRINTS("MS bad sensor rate %d",
in->sensor_odr.data);
return EC_RES_INVALID_PARAM;
}
/*
* To be sure timestamps are calculated properly,
* Send an event to have a timestamp inserted in the
* FIFO.
*/
task_set_event(TASK_ID_MOTIONSENSE,
TASK_EVENT_MOTION_ODR_CHANGE, 0);
/*
* If the sensor was suspended before, or now
* suspended, we have to recalculate the EC sampling
* rate
*/
motion_sense_set_accel_interval(
NULL, MAX_MOTION_SENSE_WAIT_TIME);
}
sensor->drv->get_data_rate(sensor, &data);
/* Save configuration parameter: ODR */
sensor->runtime_config.odr = data;
out->sensor_odr.ret = data;
args->response_size = sizeof(out->sensor_odr);
break;
case MOTIONSENSE_CMD_SENSOR_RANGE:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_motion_sensor(
in->sensor_range.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new range if the data arg has a value. */
if (in->sensor_range.data != EC_MOTION_SENSE_NO_VALUE) {
if (sensor->drv->set_range(sensor,
in->sensor_range.data,
in->sensor_range.roundup)
!= EC_SUCCESS) {
CPRINTS("MS bad sensor range %d",
in->sensor_range.data);
return EC_RES_INVALID_PARAM;
}
}
sensor->drv->get_range(sensor, &data);
/* Save configuration parameter: range */
sensor->runtime_config.range = data;
out->sensor_range.ret = data;
args->response_size = sizeof(out->sensor_range);
break;
case MOTIONSENSE_CMD_SENSOR_OFFSET:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_motion_sensor(
in->sensor_offset.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
/* Set new range if the data arg has a value. */
if (in->sensor_offset.flags & MOTION_SENSE_SET_OFFSET) {
ret = sensor->drv->set_offset(sensor,
in->sensor_offset.offset,
in->sensor_offset.temp);
if (ret != EC_SUCCESS)
return ret;
}
ret = sensor->drv->get_offset(sensor, out->sensor_offset.offset,
&out->sensor_offset.temp);
if (ret != EC_SUCCESS)
return ret;
args->response_size = sizeof(out->sensor_offset);
break;
case MOTIONSENSE_CMD_PERFORM_CALIB:
/* Verify sensor number is valid. */
sensor = host_sensor_id_to_motion_sensor(
in->sensor_offset.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
if (!sensor->drv->perform_calib)
return EC_RES_INVALID_COMMAND;
ret = sensor->drv->perform_calib(sensor);
if (ret != EC_SUCCESS)
return ret;
ret = sensor->drv->get_offset(sensor, out->sensor_offset.offset,
&out->sensor_offset.temp);
if (ret != EC_SUCCESS)
return ret;
args->response_size = sizeof(out->sensor_offset);
break;
#ifdef CONFIG_ACCEL_FIFO
case MOTIONSENSE_CMD_FIFO_FLUSH:
sensor = host_sensor_id_to_motion_sensor(
in->sensor_odr.sensor_num);
if (sensor == NULL)
return EC_RES_INVALID_PARAM;
atomic_add(&sensor->flush_pending, 1);
task_set_event(TASK_ID_MOTIONSENSE,
TASK_EVENT_MOTION_FLUSH_PENDING, 0);
/* passthrough */
case MOTIONSENSE_CMD_FIFO_INFO:
motion_sense_get_fifo_info(&out->fifo_info);
for (i = 0; i < motion_sensor_count; i++) {
out->fifo_info.lost[i] = motion_sensors[i].lost;
motion_sensors[i].lost = 0;
}
motion_sense_fifo_lost = 0;
args->response_size = sizeof(out->fifo_info) +
sizeof(uint16_t) * motion_sensor_count;
break;
case MOTIONSENSE_CMD_FIFO_READ:
mutex_lock(&g_sensor_mutex);
reported = MIN((args->response_max - sizeof(out->fifo_read)) /
motion_sense_fifo.unit_bytes,
MIN(queue_count(&motion_sense_fifo),
in->fifo_read.max_data_vector));
reported = queue_remove_units(&motion_sense_fifo,
out->fifo_read.data, reported);
mutex_unlock(&g_sensor_mutex);
out->fifo_read.number_data = reported;
args->response_size = sizeof(out->fifo_read) + reported *
motion_sense_fifo.unit_bytes;
break;
#else
case MOTIONSENSE_CMD_FIFO_INFO:
/* Only support the INFO command, to tell there is no FIFO. */
memset(&out->fifo_info, 0, sizeof(out->fifo_info));
args->response_size = sizeof(out->fifo_info);
break;
#endif
default:
/* Call other users of the motion task */
#ifdef CONFIG_LID_ANGLE
if (ret == EC_RES_INVALID_PARAM)
ret = host_cmd_motion_lid(args);
#endif
if (ret == EC_RES_INVALID_PARAM)
CPRINTS("MS bad cmd 0x%x", in->cmd);
return ret;
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_MOTION_SENSE_CMD,
host_cmd_motion_sense,
EC_VER_MASK(1) | EC_VER_MASK(2));
/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_ACCELS
static int command_accelrange(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new range, if it returns invalid arg, then return
* a parameter error.
*/
if (sensor->drv->set_range(sensor,
data,
round) == EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
} else {
sensor->drv->get_range(sensor, &data);
ccprintf("Range for sensor %d: %d\n", id, data);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrange, command_accelrange,
"id [data [roundup]]",
"Read or write accelerometer range", NULL);
static int command_accelresolution(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new resolution, if it returns invalid arg, then
* return a parameter error.
*/
if (sensor->drv->set_resolution(sensor, data, round)
== EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
} else {
sensor->drv->get_resolution(sensor, &data);
ccprintf("Resolution for sensor %d: %d\n", id, data);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelres, command_accelresolution,
"id [data [roundup]]",
"Read or write accelerometer resolution", NULL);
static int command_accel_data_rate(int argc, char **argv)
{
char *e;
int id, data, round = 1;
struct motion_sensor_t *sensor;
if (argc < 2 || argc > 4)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
if (argc >= 3) {
/* Second argument is data to write. */
data = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (argc == 4) {
/* Third argument is rounding flag. */
round = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
}
/*
* Write new data rate, if it returns invalid arg, then
* return a parameter error.
*/
if (sensor->drv->set_data_rate(sensor, data, round) ==
EC_ERROR_INVAL)
return EC_ERROR_PARAM2;
sensor->runtime_config.odr = data;
motion_sense_set_accel_interval(
NULL, MAX_MOTION_SENSE_WAIT_TIME);
} else {
sensor->drv->get_data_rate(sensor, &data);
ccprintf("Data rate for sensor %d: %d\n", id, data);
ccprintf("EC rate for sensor %d: %d\n", id,
SENSOR_EC_RATE(sensor));
ccprintf("Current EC rate: %d\n", accel_interval);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelrate, command_accel_data_rate,
"id [data [roundup]]",
"Read or write accelerometer ODR", NULL);
static int command_accel_read_xyz(int argc, char **argv)
{
char *e;
int id, n = 1, ret;
struct motion_sensor_t *sensor;
vector_3_t v;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
if (argc >= 3)
n = strtoi(argv[2], &e, 0);
sensor = &motion_sensors[id];
while ((n == -1) || (n-- > 0)) {
ret = sensor->drv->read(sensor, v);
if (ret == 0)
ccprintf("Current data %d: %-5d %-5d %-5d\n",
id, v[X], v[Y], v[Z]);
else
ccprintf("vector not ready\n");
ccprintf("Last calib. data %d: %-5d %-5d %-5d\n",
id, sensor->xyz[X], sensor->xyz[Y], sensor->xyz[Z]);
task_wait_event(MIN_MOTION_SENSE_WAIT_TIME);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelread, command_accel_read_xyz,
"id [n]",
"Read sensor x/y/z", NULL);
static int command_accel_init(int argc, char **argv)
{
char *e;
int id;
struct motion_sensor_t *sensor;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
/* First argument is sensor id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
motion_sense_init(sensor);
ccprintf("%s: %d\n", sensor->name, sensor->state);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelinit, command_accel_init,
"id",
"Init sensor", NULL);
#ifdef CONFIG_CMD_ACCEL_INFO
static int command_display_accel_info(int argc, char **argv)
{
char *e;
int val;
if (argc > 3)
return EC_ERROR_PARAM_COUNT;
/* First argument is on/off whether to display accel data. */
if (argc > 1) {
if (!parse_bool(argv[1], &val))
return EC_ERROR_PARAM1;
accel_disp = val;
}
/*
* Second arg changes the accel task time interval. Note accel
* sampling interval will be clobbered when chipset suspends or
* resumes.
*/
if (argc > 2) {
val = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
accel_interval = val * MSEC;
task_wake(TASK_ID_MOTIONSENSE);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelinfo, command_display_accel_info,
"on/off [interval]",
"Print motion sensor info, lid angle calculations"
" and set calculation frequency.", NULL);
#endif /* CONFIG_CMD_ACCEL_INFO */
#ifdef CONFIG_ACCEL_INTERRUPTS
/* TODO(crosbug.com/p/426659): this code is broken, does not with ST sensors. */
void accel_int_lid(enum gpio_signal signal)
{
/*
* Print statement is here for testing with console accelint command.
* Remove print statement when interrupt is used for real.
*/
CPRINTS("Accelerometer wake-up interrupt occurred on lid");
}
void accel_int_base(enum gpio_signal signal)
{
/*
* Print statement is here for testing with console accelint command.
* Remove print statement when interrupt is used for real.
*/
CPRINTS("Accelerometer wake-up interrupt occurred on base");
}
static int command_accelerometer_interrupt(int argc, char **argv)
{
char *e;
int id, thresh;
struct motion_sensor_t *sensor;
if (argc != 3)
return EC_ERROR_PARAM_COUNT;
/* First argument is id. */
id = strtoi(argv[1], &e, 0);
if (*e || id < 0 || id >= motion_sensor_count)
return EC_ERROR_PARAM1;
sensor = &motion_sensors[id];
/* Second argument is interrupt threshold. */
thresh = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
sensor->drv->set_interrupt(sensor, thresh);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(accelint, command_accelerometer_interrupt,
"id threshold",
"Write interrupt threshold", NULL);
#endif /* CONFIG_ACCEL_INTERRUPTS */
#ifdef CONFIG_ACCEL_FIFO
static int motion_sense_read_fifo(int argc, char **argv)
{
int count, i;
struct ec_response_motion_sensor_data v;
if (argc < 1)
return EC_ERROR_PARAM_COUNT;
/* Limit the amount of data to avoid saturating the UART buffer */
count = MIN(queue_count(&motion_sense_fifo), 16);
for (i = 0; i < count; i++) {
queue_peek_units(&motion_sense_fifo, &v, i, 1);
if (v.flags & (MOTIONSENSE_SENSOR_FLAG_TIMESTAMP |
MOTIONSENSE_SENSOR_FLAG_FLUSH)) {
uint64_t timestamp;
memcpy(&timestamp, v.data, sizeof(v.data));
ccprintf("Timestamp: 0x%016lx%s\n", timestamp,
(v.flags & MOTIONSENSE_SENSOR_FLAG_FLUSH ?
" - Flush" : ""));
} else {
ccprintf("%d %d: %-5d %-5d %-5d\n", i, v.sensor_num,
v.data[X], v.data[Y], v.data[Z]);
}
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(fiforead, motion_sense_read_fifo,
"id",
"Read Fifo sensor", NULL);
#endif
#endif /* CONFIG_CMD_ACCELS */