Files
OpenCellular/core/nds32/task.c
Dino Li 911de4d175 nds32: use INT_MASK instead of GIE
When there is an interrupt event, N8 CPU will save PSW register to IPSW
register and clear GIE then jump to interrupt service routine. N8 will
restore PSW from IPSW after "iret" instruction (the above are purely
hardware mechanism).

Nested interrupt will occur if we set GIE again in interrupt context.

symptom:
    power button pressed while LID open -> exception or unknown reset.

Signed-off-by: Dino Li <dino.li@ite.com.tw>

BRANCH=none
BUG=none
TEST=1. Manually pressed power button x200.
     2. Console "eflash" erase and write eflash OK.

Change-Id: Ic04a23d473ebc6417dffea814a27583cb8d63a1f
Reviewed-on: https://chromium-review.googlesource.com/289437
Reviewed-by: Randall Spangler <rspangler@chromium.org>
Commit-Queue: Dino Li <dino.li@ite.com.tw>
Tested-by: Dino Li <dino.li@ite.com.tw>
2015-08-20 01:37:56 +00:00

550 lines
13 KiB
C

/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Task scheduling / events module for Chrome EC operating system */
#include "atomic.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "irq_chip.h"
#include "link_defs.h"
#include "task.h"
#include "timer.h"
#include "uart.h"
#include "util.h"
typedef union {
struct {
/*
* Note that sp must be the first element in the task struct
* for __switchto() to work.
*/
uint32_t sp; /* Saved stack pointer for context switch */
uint32_t events; /* Bitmaps of received events */
uint64_t runtime; /* Time spent in task */
uint32_t *stack; /* Start of stack */
};
} task_;
/* Value to store in unused stack */
#define STACK_UNUSED_VALUE 0xdeadd00d
/* declare task routine prototypes */
#define TASK(n, r, d, s) int r(void *);
void __idle(void);
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
#undef TASK
/* Task names for easier debugging */
#define TASK(n, r, d, s) #n,
static const char * const task_names[] = {
"<< idle >>",
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
};
#undef TASK
extern int __task_start(void);
#ifndef CONFIG_LOW_POWER_IDLE
/* Idle task. Executed when no tasks are ready to be scheduled. */
void __idle(void)
{
/*
* Print when the idle task starts. This is the lowest priority task,
* so this only starts once all other tasks have gotten a chance to do
* their task inits and have gone to sleep.
*/
cprints(CC_TASK, "idle task started");
while (1) {
/*
* Wait for the next irq event. This stops the CPU clock
* (sleep / deep sleep, depending on chip config).
*/
asm("standby no_wake_grant");
}
}
#endif /* !CONFIG_LOW_POWER_IDLE */
static void task_exit_trap(void)
{
int i = task_get_current();
cprints(CC_TASK, "Task %d (%s) exited!", i, task_names[i]);
/* Exited tasks simply sleep forever */
while (1)
task_wait_event(-1);
}
/* Startup parameters for all tasks. */
#define TASK(n, r, d, s) { \
.r0 = (uint32_t)d, \
.pc = (uint32_t)r, \
.stack_size = s, \
},
static const struct {
uint32_t r0;
uint32_t pc;
uint16_t stack_size;
} const tasks_init[] = {
TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE)
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
};
#undef TASK
/* Contexts for all tasks */
static task_ tasks[TASK_ID_COUNT];
/* Sanity checks about static task invariants */
BUILD_ASSERT(TASK_ID_COUNT <= sizeof(unsigned) * 8);
BUILD_ASSERT(TASK_ID_COUNT < (1 << (sizeof(task_id_t) * 8)));
/* Stacks for all tasks */
#define TASK(n, r, d, s) + s
uint8_t task_stacks[0
TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE)
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
] __aligned(8);
#undef TASK
/* Reserve space to discard context on first context switch. */
#ifdef CONFIG_FPU
uint32_t scratchpad[17+18];
#else
uint32_t scratchpad[17];
#endif
task_ *current_task = (task_ *)scratchpad;
/*
* Should IRQs chain to svc_handler()? This should be set if either of the
* following is true:
*
* 1) Task scheduling has started, and task profiling is enabled. Task
* profiling does its tracking in svc_handler().
*
* 2) An event was set by an interrupt; this could result in a higher-priority
* task unblocking. After checking for a task switch, svc_handler() will clear
* the flag (unless profiling is also enabled; then the flag remains set).
*/
int need_resched;
/*
* Bitmap of all tasks ready to be run.
*
* Start off with only the hooks task marked as ready such that all the modules
* can do their init within a task switching context. The hooks task will then
* make a call to enable all tasks.
*/
static uint32_t tasks_ready = (1 << TASK_ID_HOOKS);
static int start_called; /* Has task swapping started */
static inline task_ *__task_id_to_ptr(task_id_t id)
{
return tasks + id;
}
/*
* We use INT_MASK to enable (interrupt_enable)/
* disable (interrupt_disable) all maskable interrupts.
* And, EC modules share HW2 ~ HW15 interrupts. If corresponding
* bit of INT_MASK is set, it will never be cleared
* (see chip_disable_irq()). To enable/disable individual
* interrupt of EC module, we can use corresponding EXT_IERx registers.
*
* ------------ -----------
* | | | ------- |
* |EC modules| | | HW2 | |
* | | | ------- |
* | INT 0 | | ------- | ------- -------
* | ~ | --> | | HW3 | | -> | GIE | -> | CPU |
* | INT 167 | | ------- | ------- -------
* | | | ... | |
* | | | ... | - clear by HW while
* | | | ------- | interrupt occur and
* | | | | HW15| | restore from IPSW after
* | | | ------- | instruction "iret".
* | EXT_IERx | | INT_MASK|
* ------------ -----------
*/
void interrupt_disable(void)
{
/* Mask all interrupts, only keep division by zero exception */
uint32_t val = (1 << 30);
asm volatile ("mtsr %0, $INT_MASK" : : "r"(val));
asm volatile ("dsb");
}
void interrupt_enable(void)
{
/* Enable HW2 ~ HW15 and division by zero exception interrupts */
uint32_t val = ((1 << 30) | 0xFFFC);
asm volatile ("mtsr %0, $INT_MASK" : : "r"(val));
}
inline int in_interrupt_context(void)
{
/* check INTL (Interrupt Stack Level) bits */
return get_psw() & PSW_INTL_MASK;
}
task_id_t task_get_current(void)
{
#ifdef CONFIG_DEBUG_BRINGUP
/* If we haven't done a context switch then our task ID isn't valid */
ASSERT(current_task != (task_ *)scratchpad);
#endif
return current_task - tasks;
}
uint32_t *task_get_event_bitmap(task_id_t tskid)
{
task_ *tsk = __task_id_to_ptr(tskid);
return &tsk->events;
}
int task_start_called(void)
{
return start_called;
}
/**
* Scheduling system call
*
* Also includes emulation of software triggering interrupt vector
*/
void syscall_handler(int desched, task_id_t resched, int swirq)
{
/* are we emulating an interrupt ? */
if (swirq) {
void (*handler)(void) = __irqhandler[swirq + 1];
/* adjust IPC to return *after* the syscall instruction */
set_ipc(get_ipc() + 4);
/* call the regular IRQ handler */
handler();
return;
}
if (desched && !current_task->events) {
/*
* Remove our own ready bit (current - tasks is same as
* task_get_current())
*/
tasks_ready &= ~(1 << (current_task - tasks));
}
tasks_ready |= 1 << resched;
/* trigger a re-scheduling on exit */
need_resched = 1;
/* adjust IPC to return *after* the syscall instruction */
set_ipc(get_ipc() + 4);
}
task_ *next_sched_task(void)
{
return __task_id_to_ptr(31 - __builtin_clz(tasks_ready));
}
static inline void __schedule(int desched, int resched, int swirq)
{
register int p0 asm("$r0") = desched;
register int p1 asm("$r1") = resched;
register int p2 asm("$r2") = swirq;
asm("syscall 0" : : "r"(p0), "r"(p1), "r"(p2));
}
static uint32_t __wait_evt(int timeout_us, task_id_t resched)
{
task_ *tsk = current_task;
task_id_t me = tsk - tasks;
uint32_t evt;
int ret;
ASSERT(!in_interrupt_context());
if (timeout_us > 0) {
timestamp_t deadline = get_time();
deadline.val += timeout_us;
ret = timer_arm(deadline, me);
ASSERT(ret == EC_SUCCESS);
}
while (!(evt = atomic_read_clear(&tsk->events))) {
/* Remove ourself and get the next task in the scheduler */
__schedule(1, resched, 0);
resched = TASK_ID_IDLE;
}
if (timeout_us > 0)
timer_cancel(me);
return evt;
}
uint32_t task_set_event(task_id_t tskid, uint32_t event, int wait)
{
task_ *receiver = __task_id_to_ptr(tskid);
ASSERT(receiver);
/* Set the event bit in the receiver message bitmap */
atomic_or(&receiver->events, event);
/* Re-schedule if priorities have changed */
if (in_interrupt_context()) {
/* The receiver might run again */
atomic_or(&tasks_ready, 1 << tskid);
need_resched = 1;
} else {
if (wait)
return __wait_evt(-1, tskid);
else
__schedule(0, tskid, 0);
}
return 0;
}
uint32_t task_wait_event(int timeout_us)
{
return __wait_evt(timeout_us, TASK_ID_IDLE);
}
uint32_t get_int_mask(void)
{
uint32_t ret;
asm volatile ("mfsr %0, $INT_MASK" : "=r"(ret));
return ret;
}
void set_int_mask(uint32_t val)
{
asm volatile ("mtsr %0, $INT_MASK" : : "r"(val));
}
static void set_int_priority(uint32_t val)
{
asm volatile ("mtsr %0, $INT_PRI" : : "r"(val));
}
void task_enable_all_tasks(void)
{
/* Mark all tasks are ready to run. */
tasks_ready = (1 << TASK_ID_COUNT) - 1;
/* Reschedule the highest priority task. */
__schedule(0, 0, 0);
}
void task_enable_irq(int irq)
{
chip_enable_irq(irq);
}
void task_disable_irq(int irq)
{
chip_disable_irq(irq);
}
void task_clear_pending_irq(int irq)
{
chip_clear_pending_irq(irq);
}
void task_trigger_irq(int irq)
{
int cpu_int = chip_trigger_irq(irq);
if (cpu_int > 0)
__schedule(0, 0, cpu_int);
}
/*
* Initialize IRQs in the IVIC and set their priorities as defined by the
* DECLARE_IRQ statements.
*/
static void ivic_init_irqs(void)
{
/* Get the IRQ priorities section from the linker */
int exc_calls = __irqprio_end - __irqprio;
int i;
uint32_t all_priorities = 0;
/* chip-specific interrupt controller initialization */
chip_init_irqs();
/*
* Re-enable global interrupts in case they're disabled. On a reboot,
* they're already enabled; if we've jumped here from another image,
* they're not.
*/
interrupt_enable();
/* Set priorities */
for (i = 0; i < exc_calls; i++) {
uint8_t irq = __irqprio[i].irq;
uint8_t prio = __irqprio[i].priority;
all_priorities |= (prio & 0x3) << (irq * 2);
}
set_int_priority(all_priorities);
}
void mutex_lock(struct mutex *mtx)
{
uint32_t id = 1 << task_get_current();
ASSERT(id != TASK_ID_INVALID);
/* critical section with interrupts off */
interrupt_disable();
mtx->waiters |= id;
while (1) {
if (!mtx->lock) { /* we got it ! */
mtx->lock = 2;
mtx->waiters &= ~id;
/* end of critical section : re-enable interrupts */
interrupt_enable();
return;
} else { /* Contention on the mutex */
/* end of critical section : re-enable interrupts */
interrupt_enable();
/* Sleep waiting for our turn */
/* TODO(crbug.com/435612, crbug.com/435611)
* This discards any pending events! */
task_wait_event(0);
/* re-enter critical section */
interrupt_disable();
}
}
}
void mutex_unlock(struct mutex *mtx)
{
uint32_t waiters;
task_ *tsk = current_task;
waiters = mtx->waiters;
/* give back the lock */
mtx->lock = 0;
while (waiters) {
task_id_t id = 31 - __builtin_clz(waiters);
/* Somebody is waiting on the mutex */
task_set_event(id, TASK_EVENT_MUTEX, 0);
waiters &= ~(1 << id);
}
/* Ensure no event is remaining from mutex wake-up */
atomic_clear(&tsk->events, TASK_EVENT_MUTEX);
}
void task_print_list(void)
{
int i;
ccputs("Task Ready Name Events Time (s) StkUsed\n");
for (i = 0; i < TASK_ID_COUNT; i++) {
char is_ready = (tasks_ready & (1<<i)) ? 'R' : ' ';
uint32_t *sp;
int stackused = tasks_init[i].stack_size;
for (sp = tasks[i].stack;
sp < (uint32_t *)tasks[i].sp && *sp == STACK_UNUSED_VALUE;
sp++)
stackused -= sizeof(uint32_t);
ccprintf("%4d %c %-16s %08x %11.6ld %3d/%3d\n", i, is_ready,
task_names[i], tasks[i].events, tasks[i].runtime,
stackused, tasks_init[i].stack_size);
cflush();
}
}
int command_task_info(int argc, char **argv)
{
task_print_list();
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(taskinfo, command_task_info,
NULL,
"Print task info",
NULL);
static int command_task_ready(int argc, char **argv)
{
if (argc < 2) {
ccprintf("tasks_ready: 0x%08x\n", tasks_ready);
} else {
tasks_ready = strtoi(argv[1], NULL, 16);
ccprintf("Setting tasks_ready to 0x%08x\n", tasks_ready);
__schedule(0, 0, 0);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(taskready, command_task_ready,
"[setmask]",
"Print/set ready tasks",
NULL);
void task_pre_init(void)
{
uint32_t *stack_next = (uint32_t *)task_stacks;
int i;
/* Fill the task memory with initial values */
for (i = 0; i < TASK_ID_COUNT; i++) {
uint32_t *sp;
/* Stack size in words */
uint32_t ssize = tasks_init[i].stack_size / 4;
tasks[i].stack = stack_next;
/*
* Update stack used by first frame: 15 regs + PC + PSW
*/
sp = stack_next + ssize - 17;
tasks[i].sp = (uint32_t)sp;
/* Initial context on stack (see __switchto()) */
sp[7] = tasks_init[i].r0; /* r0 */
sp[15] = (uint32_t)task_exit_trap; /* lr */
sp[1] = tasks_init[i].pc; /* pc */
sp[0] = 0x70009; /* psw */
sp[16] = (uint32_t)(sp + 17); /* sp */
/* Fill unused stack; also used to detect stack overflow. */
for (sp = stack_next; sp < (uint32_t *)tasks[i].sp; sp++)
*sp = STACK_UNUSED_VALUE;
stack_next += ssize;
}
/*
* Fill in guard value in scratchpad to prevent stack overflow
* detection failure on the first context switch. This works because
* the first word in the scratchpad is where the switcher will store
* sp, so it's ok to blow away.
*/
((task_ *)scratchpad)->stack = (uint32_t *)scratchpad;
*(uint32_t *)scratchpad = STACK_UNUSED_VALUE;
/* Initialize IRQs */
ivic_init_irqs();
}
int task_start(void)
{
start_called = 1;
return __task_start();
}