mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-12-30 18:41:11 +00:00
Allow to use larger RSA keys by setting CONFIG_RSA_KEY_SIZE to 4096 or 8192 rather than using the default 2048-bit size. It's mainly for benchmarking purpose right now as we don't have the RAM to store the 3x key size buffer and the flash space for the public key structure. Signed-off-by: Vincent Palatin <vpalatin@chromium.org> BRANCH=samus BUG=none TEST=build Zinger with CONFIG_RSA_KEY_SIZE equals to 4096 and run it. Change-Id: I9839121bf158d0a30dde1e48d875f345191bfec2 Reviewed-on: https://chromium-review.googlesource.com/228925 Reviewed-by: Randall Spangler <rspangler@chromium.org> Commit-Queue: Vincent Palatin <vpalatin@chromium.org> Tested-by: Vincent Palatin <vpalatin@chromium.org>
229 lines
6.6 KiB
Python
Executable File
229 lines
6.6 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
|
|
# Use of this source code is governed by a BSD-style license that can be
|
|
# found in the LICENSE file.
|
|
"""Extract the public key from a .pem RSA private key file (PKCS#1),
|
|
and compute the public key coefficients used by the signature verification
|
|
code.
|
|
|
|
Example:
|
|
./util/pem_extract_pubkey board/zinger/zinger_dev_key.pem
|
|
|
|
Note: to generate a suitable private key :
|
|
RSA 2048-bit with public exponent F4 (65537)
|
|
you can use the following OpenSSL command :
|
|
openssl genrsa -F4 -out private.pem 2048
|
|
"""
|
|
|
|
import array
|
|
import base64
|
|
import sys
|
|
|
|
VERSION = '0.0.1'
|
|
|
|
"""
|
|
RSA Private Key file (PKCS#1) encoding :
|
|
|
|
It starts and ends with the tags:
|
|
-----BEGIN RSA PRIVATE KEY-----
|
|
BASE64 ENCODED DATA
|
|
-----END RSA PRIVATE KEY-----
|
|
|
|
The base64 encoded data is using an ASN.1 / DER structure :
|
|
|
|
RSAPrivateKey ::= SEQUENCE {
|
|
version Version,
|
|
modulus INTEGER, -- n
|
|
publicExponent INTEGER, -- e
|
|
privateExponent INTEGER, -- d
|
|
prime1 INTEGER, -- p
|
|
prime2 INTEGER, -- q
|
|
exponent1 INTEGER, -- d mod (p-1)
|
|
exponent2 INTEGER, -- d mod (q-1)
|
|
coefficient INTEGER, -- (inverse of q) mod p
|
|
otherPrimeInfos OtherPrimeInfos OPTIONAL
|
|
}
|
|
"""
|
|
|
|
PEM_HEADER='-----BEGIN RSA PRIVATE KEY-----'
|
|
PEM_FOOTER='-----END RSA PRIVATE KEY-----'
|
|
|
|
# supported RSA key sizes
|
|
RSA_KEY_SIZES=[2048, 4096, 8192]
|
|
|
|
class PEMError(Exception):
|
|
"""Exception class for pem_extract_pubkey utility."""
|
|
|
|
# "Constructed" bit in DER tag
|
|
DER_C=0x20
|
|
# DER Sequence tag (always constructed)
|
|
DER_SEQUENCE=DER_C|0x10
|
|
# DER Integer tag
|
|
DER_INTEGER=0x02
|
|
|
|
class DER:
|
|
"""DER encoded binary data storage and parser."""
|
|
def __init__(self, data):
|
|
# DER encoded binary data
|
|
self._data = data
|
|
# Initialize index in the data stream
|
|
self._idx = 0
|
|
|
|
def get_byte(self):
|
|
octet = ord(self._data[self._idx])
|
|
self._idx += 1
|
|
return octet
|
|
|
|
def get_len(self):
|
|
octet = self.get_byte()
|
|
if octet == 0x80:
|
|
raise PEMError('length indefinite form not supported')
|
|
if octet & 0x80: # Length long form
|
|
bytecnt = octet & ~0x80
|
|
total = 0
|
|
for i in range(bytecnt):
|
|
total = (total << 8) | self.get_byte()
|
|
return total
|
|
else: # Length short form
|
|
return octet
|
|
|
|
def get_tag(self):
|
|
tag = self.get_byte()
|
|
length = self.get_len()
|
|
data = self._data[self._idx:self._idx + length]
|
|
self._idx += length
|
|
return {"tag" : tag, "length" : length, "data" : data}
|
|
|
|
def pem_get_mod(filename):
|
|
"""Extract the modulus from a PEM private key file.
|
|
|
|
the PEM file is DER encoded according the structure quoted above.
|
|
|
|
Args:
|
|
filename : Full path to the .pem private key file.
|
|
|
|
Raises:
|
|
PEMError: If unable to parse .pem file or invalid file format.
|
|
"""
|
|
# Read all the content of the .pem file
|
|
content = file(filename).readlines()
|
|
# Check the PEM RSA Private key tags
|
|
if content[0].strip() != PEM_HEADER:
|
|
raise PEMError('invalid PEM private key header')
|
|
if content[-1].strip() != PEM_FOOTER:
|
|
raise PEMError('invalid PEM private key footer')
|
|
# Decode the DER binary stream from the base64 data
|
|
b64 = "".join([l.strip() for l in content[1:-1]])
|
|
der = DER(base64.b64decode(b64))
|
|
|
|
# Parse the DER and fail at the first error
|
|
# The private key should be a (constructed) sequence
|
|
seq = der.get_tag()
|
|
if seq["tag"] != DER_SEQUENCE:
|
|
raise PEMError('expecting an ASN.1 sequence')
|
|
seq = DER(seq["data"])
|
|
|
|
# 1st field is Version
|
|
ver = seq.get_tag()
|
|
if ver["tag"] != DER_INTEGER:
|
|
raise PEMError('version field should be an integer')
|
|
|
|
# 2nd field is Modulus
|
|
mod = seq.get_tag()
|
|
if mod["tag"] != DER_INTEGER:
|
|
raise PEMError('modulus field should be an integer')
|
|
# 2048 bits + mandatory ASN.1 sign (0) => 257 Bytes
|
|
modSize = (mod["length"] - 1) * 8
|
|
if modSize not in RSA_KEY_SIZES or mod["data"][0] != '\x00':
|
|
raise PEMError('Invalid key length : %d bits' % (modSize))
|
|
|
|
# 3rd field is Public Exponent
|
|
exp = seq.get_tag()
|
|
if exp["tag"] != DER_INTEGER:
|
|
raise PEMError('exponent field should be an integer')
|
|
if exp["length"] != 3 or exp["data"] != "\x01\x00\x01":
|
|
raise PEMError('the public exponent must be F4 (65537)')
|
|
|
|
return mod["data"]
|
|
|
|
def modinv(a, m):
|
|
""" The multiplicitive inverse of a in the integers modulo m.
|
|
|
|
Return b when a * b == 1 mod m
|
|
"""
|
|
# Extended GCD
|
|
lastrem, rem = abs(a), abs(m)
|
|
x, lastx, y, lasty = 0, 1, 1, 0
|
|
while rem:
|
|
lastrem, (quotient, rem) = rem, divmod(lastrem, rem)
|
|
x, lastx = lastx - quotient*x, x
|
|
y, lasty = lasty - quotient*y, y
|
|
#
|
|
if lastrem != 1:
|
|
raise ValueError
|
|
x = lastx * (-1 if a < 0 else 1)
|
|
return x % m
|
|
|
|
def to_words(n, count):
|
|
h = '%x' % n
|
|
s = ('0'*(len(h) % 2) + h).zfill(count*8).decode('hex')
|
|
return array.array("I", s[::-1])
|
|
|
|
def compute_mod_parameters(modulus):
|
|
''' Prepare/pre-compute coefficients for the RSA public key signature
|
|
verification code.
|
|
'''
|
|
# create an array of uint32_t to store the modulus but skip the sign byte
|
|
w = array.array("I",modulus[1:])
|
|
wordCount = (len(modulus) - 1) / 4
|
|
# all integers in DER encoded .pem file are big endian.
|
|
w.reverse()
|
|
w.byteswap()
|
|
# convert the big-endian modulus to a big integer for the computations
|
|
N = 0
|
|
for i in range(len(modulus)):
|
|
N = (N << 8) | ord(modulus[i])
|
|
# -1 / N[0] mod 2^32
|
|
B = 0x100000000L
|
|
n0inv = B - modinv(w[0], B)
|
|
# R = 2^(modulo size); RR = (R * R) % N
|
|
RR = pow(2, 4096, N)
|
|
rr_words = to_words(RR, wordCount)
|
|
|
|
return {'mod':w, 'rr':rr_words, 'n0inv':n0inv}
|
|
|
|
def print_header(params):
|
|
print "{\n\t.n = {%s}," % (",".join(["0x%08x" % (i) for i in params['mod']]))
|
|
print "\t.rr = {%s}," % (",".join(["0x%08x" % (i) for i in params['rr']]))
|
|
print "\t.n0inv = 0x%08x\n};" % (params['n0inv'])
|
|
|
|
def dump_blob(params):
|
|
mod_bin = params['mod'].tostring()
|
|
rr_bin = params['rr'].tostring()
|
|
n0inv_bin = array.array("I",[params['n0inv']]).tostring()
|
|
return mod_bin + rr_bin + n0inv_bin
|
|
|
|
def extract_pubkey(pemfile, headerMode=True):
|
|
# Read the modulus in the .pem file
|
|
mod = pem_get_mod(sys.argv[1])
|
|
# Pre-compute the parameters used by the verification code
|
|
p = compute_mod_parameters(mod)
|
|
|
|
if headerMode:
|
|
# Generate a C header file with the parameters
|
|
print_header(p)
|
|
else:
|
|
# Generate the packed structure as a binary blob
|
|
return dump_blob(p)
|
|
|
|
if __name__ == '__main__':
|
|
try:
|
|
if len(sys.argv) < 2:
|
|
raise PEMError('Invalid arguments. Usage: ./pem_extract_pubkey priv.pem')
|
|
extract_pubkey(sys.argv[1])
|
|
except KeyboardInterrupt:
|
|
sys.exit(0)
|
|
except PEMError as e:
|
|
sys.stderr.write("Error: %s\n" % (e.message))
|
|
sys.exit(1)
|