Files
OpenCellular/vboot_firmware/lib/kernel_image_fw.c
Gaurav Shah bcd8f4a07c Make kernel signature a part of the kernel preamble.
With this change, the kernel signature is a part of the preamble block (and therefore, used during preamble signature verification).

BUG=670
TEST=image verification tests still pass. corrected splicing test expectations (and it passes).

Review URL: http://codereview.chromium.org/2292001
2010-05-26 13:19:00 -07:00

460 lines
20 KiB
C

/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Functions for verifying a verified boot kernel image.
* (Firmware portion)
*/
#include "kernel_image_fw.h"
#include "cryptolib.h"
#include "rollback_index.h"
#include "utility.h"
/* Macro to determine the size of a field structure in the KernelImage
* structure. */
#define FIELD_LEN(field) (sizeof(((KernelImage*)0)->field))
char* kVerifyKernelErrors[VERIFY_KERNEL_MAX] = {
"Success.",
"Invalid Image.",
"Kernel Key Signature Failed.",
"Invalid Kernel Verification Algorithm.",
"Preamble Signature Failed.",
"Kernel Signature Failed.",
"Wrong Kernel Magic.",
};
inline uint64_t GetKernelPreambleLen(int algorithm) {
return (FIELD_LEN(kernel_version) +
FIELD_LEN(kernel_len) +
FIELD_LEN(bootloader_offset) +
FIELD_LEN(bootloader_size) +
FIELD_LEN(padded_header_size) +
siglen_map[algorithm]);
}
uint64_t GetVblockHeaderSize(const uint8_t* vkernel_blob) {
uint64_t len = 0;
uint16_t firmware_sign_algorithm;
uint16_t kernel_sign_algorithm;
int algorithms_offset = (FIELD_LEN(magic) +
FIELD_LEN(header_version) +
FIELD_LEN(header_len));
if (SafeMemcmp(vkernel_blob, KERNEL_MAGIC, KERNEL_MAGIC_SIZE)) {
debug("Not a valid verified boot kernel blob.\n");
return 0;
}
Memcpy(&firmware_sign_algorithm,
vkernel_blob + algorithms_offset,
sizeof(firmware_sign_algorithm));
Memcpy(&kernel_sign_algorithm,
vkernel_blob + algorithms_offset + FIELD_LEN(kernel_sign_algorithm),
sizeof(kernel_sign_algorithm));
if (firmware_sign_algorithm >= kNumAlgorithms) {
debug("Invalid firmware signing algorithm.\n");
return 0;
}
if (kernel_sign_algorithm >= kNumAlgorithms) {
debug("Invalid kernel signing algorithm.\n");
return 0;
}
len = algorithms_offset; /* magic, header length and version. */
len += (FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(kernel_sign_algorithm) +
FIELD_LEN(kernel_key_version) +
RSAProcessedKeySize(kernel_sign_algorithm) + /* kernel_sign_key */
FIELD_LEN(header_checksum) +
siglen_map[firmware_sign_algorithm] + /* kernel_key_signature */
GetKernelPreambleLen(kernel_sign_algorithm) +
siglen_map[kernel_sign_algorithm]); /* preamble_signature */
return len;
}
int VerifyKernelKeyHeader(const uint8_t* firmware_key_blob,
const uint8_t* header_blob,
const int dev_mode,
int* firmware_algorithm,
int* kernel_algorithm,
int* kernel_header_len) {
int kernel_sign_key_len;
int firmware_sign_key_len;
uint16_t header_version, header_len;
uint16_t firmware_sign_algorithm, kernel_sign_algorithm;
uint8_t* header_checksum = NULL;
/* Base Offset for the header_checksum field. Actual offset is
* this + kernel_sign_key_len. */
int base_header_checksum_offset = (FIELD_LEN(header_version) +
FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(kernel_sign_algorithm) +
FIELD_LEN(kernel_key_version));
Memcpy(&header_version, header_blob, sizeof(header_version));
Memcpy(&header_len, header_blob + FIELD_LEN(header_version),
sizeof(header_len));
Memcpy(&firmware_sign_algorithm,
header_blob + (FIELD_LEN(header_version) +
FIELD_LEN(header_len)),
sizeof(firmware_sign_algorithm));
Memcpy(&kernel_sign_algorithm,
header_blob + (FIELD_LEN(header_version) +
FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm)),
sizeof(kernel_sign_algorithm));
/* TODO(gauravsh): Make this return two different error types depending
* on whether the firmware or kernel signing algorithm is invalid. */
if (firmware_sign_algorithm >= kNumAlgorithms)
return VERIFY_KERNEL_INVALID_ALGORITHM;
if (kernel_sign_algorithm >= kNumAlgorithms)
return VERIFY_KERNEL_INVALID_ALGORITHM;
*firmware_algorithm = (int) firmware_sign_algorithm;
*kernel_algorithm = (int) kernel_sign_algorithm;
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
/* Verify if header len is correct? */
if (header_len != (base_header_checksum_offset +
kernel_sign_key_len +
FIELD_LEN(header_checksum))) {
debug("VerifyKernelKeyHeader: Header length mismatch\n");
return VERIFY_KERNEL_INVALID_IMAGE;
}
*kernel_header_len = (int) header_len;
/* Verify if the hash of the header is correct. */
header_checksum = DigestBuf(header_blob,
header_len - FIELD_LEN(header_checksum),
SHA512_DIGEST_ALGORITHM);
if (SafeMemcmp(header_checksum,
header_blob + (base_header_checksum_offset +
kernel_sign_key_len),
FIELD_LEN(header_checksum))) {
Free(header_checksum);
debug("VerifyKernelKeyHeader: Invalid header hash\n");
return VERIFY_KERNEL_INVALID_IMAGE;
}
Free(header_checksum);
/* Verify kernel key signature unless we are in dev mode. */
if (!dev_mode) {
if (!RSAVerifyBinary_f(firmware_key_blob, NULL, /* Key to use */
header_blob, /* Data to verify */
header_len, /* Length of data */
header_blob + header_len, /* Expected Signature */
firmware_sign_algorithm))
return VERIFY_KERNEL_KEY_SIGNATURE_FAILED;
}
return 0;
}
int VerifyKernelPreamble(RSAPublicKey* kernel_sign_key,
const uint8_t* preamble_blob,
int algorithm,
uint64_t* kernel_len) {
int preamble_len = GetKernelPreambleLen(algorithm);
if (!RSAVerifyBinary_f(NULL, kernel_sign_key, /* Key to use */
preamble_blob, /* Data to verify */
preamble_len, /* Length of data */
preamble_blob + preamble_len, /* Expected Signature */
algorithm))
return VERIFY_KERNEL_PREAMBLE_SIGNATURE_FAILED;
Memcpy(kernel_len,
preamble_blob + FIELD_LEN(kernel_version),
FIELD_LEN(kernel_len));
return 0;
}
int VerifyKernelData(RSAPublicKey* kernel_sign_key,
const uint8_t* kernel_signature,
const uint8_t* kernel_data,
uint64_t kernel_len,
int algorithm) {
if (!RSAVerifyBinary_f(NULL, kernel_sign_key, /* Key to use */
kernel_data, /* Data to verify */
kernel_len, /* Length of data */
kernel_signature, /* Expected Signature */
algorithm))
return VERIFY_KERNEL_SIGNATURE_FAILED;
return 0;
}
int VerifyKernelHeader(const uint8_t* firmware_key_blob,
const uint8_t* kernel_header_blob,
const int dev_mode,
const uint8_t** expected_kernel_signature,
RSAPublicKey** kernel_sign_key,
int* kernel_sign_algorithm,
uint64_t* kernel_len) {
int error_code;
int firmware_sign_algorithm; /* Firmware signing key algorithm. */
int kernel_sign_key_len, kernel_key_signature_len, kernel_signature_len,
header_len;
const uint8_t* header_ptr = NULL; /* Pointer to key header. */
const uint8_t* preamble_ptr = NULL; /* Pointer to start of preamble. */
const uint8_t* kernel_sign_key_ptr = NULL; /* Pointer to signing key. */
/* Note: All the offset calculations are based on struct FirmwareImage which
* is defined in include/firmware_image.h. */
/* Compare magic bytes. */
if (SafeMemcmp(kernel_header_blob, KERNEL_MAGIC, KERNEL_MAGIC_SIZE))
return VERIFY_KERNEL_WRONG_MAGIC;
header_ptr = kernel_header_blob + KERNEL_MAGIC_SIZE;
/* Only continue if header verification succeeds. */
if ((error_code = VerifyKernelKeyHeader(firmware_key_blob, header_ptr,
dev_mode,
&firmware_sign_algorithm,
kernel_sign_algorithm,
&header_len))) {
debug("VerifyKernelHeader: Kernel Key Header verification failed.\n");
return error_code; /* AKA jump to recovery. */
}
/* Parse signing key into RSAPublicKey structure since it is required multiple
* times. */
kernel_sign_key_len = RSAProcessedKeySize(*kernel_sign_algorithm);
kernel_sign_key_ptr = header_ptr + (FIELD_LEN(header_version) +
FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(kernel_sign_algorithm) +
FIELD_LEN(kernel_key_version));
*kernel_sign_key = RSAPublicKeyFromBuf(kernel_sign_key_ptr,
kernel_sign_key_len);
kernel_signature_len = siglen_map[*kernel_sign_algorithm];
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
/* Only continue if preamble verification succeeds. */
preamble_ptr = (header_ptr + header_len + kernel_key_signature_len);
if ((error_code = VerifyKernelPreamble(*kernel_sign_key, preamble_ptr,
*kernel_sign_algorithm,
kernel_len))) {
RSAPublicKeyFree(*kernel_sign_key);
return error_code; /* AKA jump to recovery. */
}
*expected_kernel_signature = (preamble_ptr +
GetKernelPreambleLen(*kernel_sign_algorithm) -
kernel_signature_len); /* Skip beginning of
* preamble. */
return 0;
}
int VerifyKernel(const uint8_t* firmware_key_blob,
const uint8_t* kernel_blob,
const int dev_mode) {
int error_code;
int firmware_sign_algorithm; /* Firmware signing key algorithm. */
int kernel_sign_algorithm; /* Kernel Signing key algorithm. */
RSAPublicKey* kernel_sign_key;
int kernel_sign_key_len, kernel_key_signature_len, kernel_signature_len,
header_len;
uint64_t kernel_len;
const uint8_t* header_ptr; /* Pointer to header. */
const uint8_t* kernel_sign_key_ptr; /* Pointer to signing key. */
const uint8_t* preamble_ptr; /* Pointer to kernel preamble block. */
const uint8_t* kernel_ptr; /* Pointer to kernel signature/data. */
const uint8_t* kernel_signature;
/* Note: All the offset calculations are based on struct FirmwareImage which
* is defined in include/firmware_image.h. */
/* Compare magic bytes. */
if (SafeMemcmp(kernel_blob, KERNEL_MAGIC, KERNEL_MAGIC_SIZE)) {
debug("VerifyKernel: Kernel magic bytes not found.\n");
return VERIFY_KERNEL_WRONG_MAGIC;
}
header_ptr = kernel_blob + KERNEL_MAGIC_SIZE;
/* Only continue if header verification succeeds. */
if ((error_code = VerifyKernelKeyHeader(firmware_key_blob, header_ptr, dev_mode,
&firmware_sign_algorithm,
&kernel_sign_algorithm, &header_len))) {
debug("VerifyKernel: Kernel header verification failed.\n");
return error_code; /* AKA jump to recovery. */
}
/* Parse signing key into RSAPublicKey structure since it is required multiple
* times. */
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
kernel_sign_key_ptr = header_ptr + (FIELD_LEN(header_version) +
FIELD_LEN(header_len) +
FIELD_LEN(firmware_sign_algorithm) +
FIELD_LEN(kernel_sign_algorithm) +
FIELD_LEN(kernel_key_version));
kernel_sign_key = RSAPublicKeyFromBuf(kernel_sign_key_ptr,
kernel_sign_key_len);
kernel_signature_len = siglen_map[kernel_sign_algorithm];
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
/* Only continue if preamble verification succeeds. */
preamble_ptr = (header_ptr + header_len + kernel_key_signature_len);
if ((error_code = VerifyKernelPreamble(kernel_sign_key, preamble_ptr,
kernel_sign_algorithm,
&kernel_len))) {
debug("VerifyKernel: Kernel preamble verification failed.\n");
RSAPublicKeyFree(kernel_sign_key);
return error_code; /* AKA jump to recovery. */
}
/* Only continue if kernel data verification succeeds. */
kernel_ptr = (preamble_ptr +
GetKernelPreambleLen(kernel_sign_algorithm) +
kernel_signature_len); /* preamble signature. */
kernel_signature = kernel_ptr - 2 * kernel_signature_len; /* end of kernel
* preamble. */
if ((error_code = VerifyKernelData(kernel_sign_key, /* Verification key */
kernel_signature, /* kernel signature */
kernel_ptr, /* Start of kernel data */
kernel_len, /* Length of kernel data. */
kernel_sign_algorithm))) {
RSAPublicKeyFree(kernel_sign_key);
return error_code; /* AKA jump to recovery. */
}
RSAPublicKeyFree(kernel_sign_key);
return 0; /* Success! */
}
uint32_t GetLogicalKernelVersion(uint8_t* kernel_blob) {
uint8_t* kernel_ptr;
uint16_t kernel_key_version;
uint16_t kernel_version;
uint16_t firmware_sign_algorithm;
uint16_t kernel_sign_algorithm;
int kernel_key_signature_len;
int kernel_sign_key_len;
kernel_ptr = kernel_blob + (FIELD_LEN(magic) +
FIELD_LEN(header_version) +
FIELD_LEN(header_len));
Memcpy(&firmware_sign_algorithm, kernel_ptr, sizeof(firmware_sign_algorithm));
kernel_ptr += FIELD_LEN(firmware_sign_algorithm);
Memcpy(&kernel_sign_algorithm, kernel_ptr, sizeof(kernel_sign_algorithm));
kernel_ptr += FIELD_LEN(kernel_sign_algorithm);
Memcpy(&kernel_key_version, kernel_ptr, sizeof(kernel_key_version));
if (firmware_sign_algorithm >= kNumAlgorithms)
return 0;
if (kernel_sign_algorithm >= kNumAlgorithms)
return 0;
kernel_key_signature_len = siglen_map[firmware_sign_algorithm];
kernel_sign_key_len = RSAProcessedKeySize(kernel_sign_algorithm);
kernel_ptr += (FIELD_LEN(kernel_key_version) +
kernel_sign_key_len +
FIELD_LEN(header_checksum) +
kernel_key_signature_len);
Memcpy(&kernel_version, kernel_ptr, sizeof(kernel_version));
return CombineUint16Pair(kernel_key_version, kernel_version);
}
int VerifyKernelDriver_f(uint8_t* firmware_key_blob,
kernel_entry* kernelA,
kernel_entry* kernelB,
int dev_mode) {
int i;
/* Contains the logical kernel version (32-bit) which is calculated as
* (kernel_key_version << 16 | kernel_version) where
* [kernel_key_version], [firmware_version] are both 16-bit.
*/
uint32_t kernelA_lversion, kernelB_lversion;
uint32_t min_lversion; /* Minimum of kernel A and kernel B lversion. */
uint32_t stored_lversion; /* Stored logical version in the TPM. */
kernel_entry* try_kernel[2]; /* Kernel in try order. */
int try_kernel_which[2]; /* Which corresponding kernel in the try order */
uint32_t try_kernel_lversion[2]; /* Their logical versions. */
/* [kernel_to_boot] will eventually contain the boot path to follow
* and is returned to the caller. Initially, we set it to recovery. If
* a valid bootable kernel is found, it will be set to that. */
int kernel_to_boot = BOOT_KERNEL_RECOVERY_CONTINUE;
/* The TPM must already have be initialized, so no need to call SetupTPM(). */
/* We get the key versions by reading directly from the image blobs without
* any additional (expensive) sanity checking on the blob since it's faster to
* outright reject a kernel with an older kernel key version. A malformed
* or corrupted kernel blob will still fail when VerifyKernel() is called
* on it.
*/
kernelA_lversion = GetLogicalKernelVersion(kernelA->kernel_blob);
kernelB_lversion = GetLogicalKernelVersion(kernelB->kernel_blob);
min_lversion = Min(kernelA_lversion, kernelB_lversion);
stored_lversion = CombineUint16Pair(GetStoredVersion(KERNEL_KEY_VERSION),
GetStoredVersion(KERNEL_VERSION));
/* TODO(gauravsh): The kernel entries kernelA and kernelB come from the
* partition table - verify its signature/checksum before proceeding
* further. */
/* The logic for deciding which kernel to boot from is taken from the
* the Chromium OS Drive Map design document.
*
* We went to consider the kernels in their according to their boot
* priority attribute value.
*/
if (kernelA->boot_priority >= kernelB->boot_priority) {
try_kernel[0] = kernelA;
try_kernel_which[0] = BOOT_KERNEL_A_CONTINUE;
try_kernel_lversion[0] = kernelA_lversion;
try_kernel[1] = kernelB;
try_kernel_which[1] = BOOT_KERNEL_B_CONTINUE;
try_kernel_lversion[1] = kernelB_lversion;
} else {
try_kernel[0] = kernelB;
try_kernel_which[0] = BOOT_KERNEL_B_CONTINUE;
try_kernel_lversion[0] = kernelB_lversion;
try_kernel[1] = kernelA;
try_kernel_which[1] = BOOT_KERNEL_A_CONTINUE;
try_kernel_lversion[1] = kernelA_lversion;
}
/* TODO(gauravsh): Changes to boot_tries_remaining and boot_priority
* below should be propagated to partition table. This will be added
* once the firmware parition table parsing code is in. */
for (i = 0; i < 2; i++) {
if ((try_kernel[i]->boot_success_flag ||
try_kernel[i]->boot_tries_remaining) &&
(VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
try_kernel[i]->kernel_blob,
dev_mode))) {
if (try_kernel[i]->boot_tries_remaining > 0)
try_kernel[i]->boot_tries_remaining--;
if (stored_lversion > try_kernel_lversion[i])
continue; /* Rollback: I am afraid I can't let you do that Dave. */
if (i == 0 && (stored_lversion < try_kernel_lversion[1])) {
/* The higher priority kernel is valid and bootable, See if we
* need to update the stored version for rollback prevention. */
if (VERIFY_KERNEL_SUCCESS == VerifyKernel(firmware_key_blob,
try_kernel[1]->kernel_blob,
dev_mode)) {
WriteStoredVersion(KERNEL_KEY_VERSION,
(uint16_t) (min_lversion >> 16));
WriteStoredVersion(KERNEL_VERSION,
(uint16_t) (min_lversion & 0xFFFF));
stored_lversion = min_lversion; /* Update stored version as it's
* used later. */
}
}
kernel_to_boot = try_kernel_which[i];
break; /* We found a valid kernel. */
}
try_kernel[i]->boot_priority = 0;
} /* for loop. */
/* Lock Kernel TPM rollback indices from further writes.
* TODO(gauravsh): Figure out if these can be combined into one
* 32-bit location since we seem to always use them together. This can help
* us minimize the number of NVRAM writes/locks (which are limited over flash
* memory lifetimes.
*/
LockStoredVersion(KERNEL_KEY_VERSION);
LockStoredVersion(KERNEL_VERSION);
return kernel_to_boot;
}