mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
It will go away entirely once the build has moved to vboot_kernel. Review URL: http://codereview.chromium.org/2866006
381 lines
13 KiB
C
381 lines
13 KiB
C
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Functions for loading a kernel from disk.
|
|
* (Firmware portion)
|
|
*/
|
|
|
|
#include "vboot_kernel.h"
|
|
|
|
#include <inttypes.h> /* For PRIu64 */
|
|
#include "boot_device.h"
|
|
#include "cgptlib.h"
|
|
#include "load_kernel_fw.h"
|
|
#include "rollback_index.h"
|
|
#include "utility.h"
|
|
#include "vboot_common.h"
|
|
|
|
|
|
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
|
|
|
|
|
|
/* Allocates and reads GPT data from the drive. The sector_bytes and
|
|
* drive_sectors fields should be filled on input. The primary and
|
|
* secondary header and entries are filled on output.
|
|
*
|
|
* Returns 0 if successful, 1 if error. */
|
|
int AllocAndReadGptData(GptData* gptdata) {
|
|
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
|
|
/* No data to be written yet */
|
|
gptdata->modified = 0;
|
|
|
|
/* Allocate all buffers */
|
|
gptdata->primary_header = (uint8_t*)Malloc(gptdata->sector_bytes);
|
|
gptdata->secondary_header = (uint8_t*)Malloc(gptdata->sector_bytes);
|
|
gptdata->primary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE);
|
|
gptdata->secondary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE);
|
|
|
|
if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL ||
|
|
gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL)
|
|
return 1;
|
|
|
|
/* Read data from the drive, skipping the protective MBR */
|
|
if (0 != BootDeviceReadLBA(1, 1, gptdata->primary_header))
|
|
return 1;
|
|
if (0 != BootDeviceReadLBA(2, entries_sectors, gptdata->primary_entries))
|
|
return 1;
|
|
if (0 != BootDeviceReadLBA(gptdata->drive_sectors - entries_sectors - 1,
|
|
entries_sectors, gptdata->secondary_entries))
|
|
return 1;
|
|
if (0 != BootDeviceReadLBA(gptdata->drive_sectors - 1,
|
|
1, gptdata->secondary_header))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Writes any changes for the GPT data back to the drive, then frees
|
|
* the buffers.
|
|
*
|
|
* Returns 0 if successful, 1 if error. */
|
|
int WriteAndFreeGptData(GptData* gptdata) {
|
|
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
|
|
if (gptdata->primary_header) {
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER1) {
|
|
if (0 != BootDeviceWriteLBA(1, 1, gptdata->primary_header))
|
|
return 1;
|
|
}
|
|
Free(gptdata->primary_header);
|
|
}
|
|
|
|
if (gptdata->primary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
|
|
if (0 != BootDeviceWriteLBA(2, entries_sectors,
|
|
gptdata->primary_entries))
|
|
return 1;
|
|
}
|
|
Free(gptdata->primary_entries);
|
|
}
|
|
|
|
if (gptdata->secondary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
|
|
if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - entries_sectors - 1,
|
|
entries_sectors, gptdata->secondary_entries))
|
|
return 1;
|
|
}
|
|
Free(gptdata->secondary_entries);
|
|
}
|
|
|
|
if (gptdata->secondary_header) {
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER2) {
|
|
if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - 1, 1,
|
|
gptdata->secondary_header))
|
|
return 1;
|
|
}
|
|
Free(gptdata->secondary_header);
|
|
}
|
|
|
|
/* Success */
|
|
return 0;
|
|
}
|
|
|
|
|
|
int LoadKernel(LoadKernelParams* params) {
|
|
|
|
VbPublicKey* kernel_subkey = (VbPublicKey*)params->header_sign_key_blob;
|
|
|
|
GptData gpt;
|
|
uint64_t part_start, part_size;
|
|
uint64_t blba = params->bytes_per_lba;
|
|
uint64_t kbuf_sectors = KBUF_SIZE / blba;
|
|
uint8_t* kbuf = NULL;
|
|
int found_partitions = 0;
|
|
int good_partition = -1;
|
|
uint16_t tpm_key_version = 0;
|
|
uint16_t tpm_kernel_version = 0;
|
|
uint64_t lowest_key_version = 0xFFFF;
|
|
uint64_t lowest_kernel_version = 0xFFFF;
|
|
int is_dev = ((BOOT_FLAG_DEVELOPER & params->boot_flags) &&
|
|
!(BOOT_FLAG_RECOVERY & params->boot_flags));
|
|
int is_normal = (!(BOOT_FLAG_DEVELOPER & params->boot_flags) &&
|
|
!(BOOT_FLAG_RECOVERY & params->boot_flags));
|
|
|
|
/* Clear output params in case we fail */
|
|
params->partition_number = 0;
|
|
params->bootloader_address = 0;
|
|
params->bootloader_size = 0;
|
|
|
|
if (is_normal) {
|
|
/* Read current kernel key index from TPM. Assumes TPM is already
|
|
* initialized. */
|
|
if (0 != GetStoredVersions(KERNEL_VERSIONS,
|
|
&tpm_key_version,
|
|
&tpm_kernel_version)) {
|
|
debug("Unable to get stored version from TPM\n");
|
|
return LOAD_KERNEL_RECOVERY;
|
|
}
|
|
} else if (is_dev) {
|
|
/* In developer mode, we ignore the kernel subkey, and just use
|
|
* the SHA-512 hash to verify the key block. */
|
|
kernel_subkey = NULL;
|
|
}
|
|
|
|
do {
|
|
/* Read GPT data */
|
|
gpt.sector_bytes = blba;
|
|
gpt.drive_sectors = params->ending_lba + 1;
|
|
if (0 != AllocAndReadGptData(&gpt)) {
|
|
debug("Unable to read GPT data\n");
|
|
break;
|
|
}
|
|
|
|
/* Initialize GPT library */
|
|
if (GPT_SUCCESS != GptInit(&gpt)) {
|
|
debug("Error parsing GPT\n");
|
|
break;
|
|
}
|
|
|
|
/* Allocate kernel header buffers */
|
|
kbuf = (uint8_t*)Malloc(KBUF_SIZE);
|
|
if (!kbuf)
|
|
break;
|
|
|
|
/* Loop over candidate kernel partitions */
|
|
while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) {
|
|
VbKeyBlockHeader* key_block;
|
|
VbKernelPreambleHeader* preamble;
|
|
RSAPublicKey* data_key;
|
|
uint64_t key_version;
|
|
uint64_t body_offset;
|
|
|
|
debug("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n",
|
|
part_start, part_size);
|
|
|
|
/* Found at least one kernel partition. */
|
|
found_partitions++;
|
|
|
|
/* Read the first part of the kernel partition */
|
|
if (part_size < kbuf_sectors)
|
|
continue;
|
|
if (0 != BootDeviceReadLBA(part_start, kbuf_sectors, kbuf))
|
|
continue;
|
|
|
|
/* Verify the key block */
|
|
key_block = (VbKeyBlockHeader*)kbuf;
|
|
if ((0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey))) {
|
|
debug("Verifying key block failed.\n");
|
|
continue;
|
|
}
|
|
|
|
/* Check the key block flags against the current boot mode */
|
|
if (!(key_block->key_block_flags &&
|
|
((BOOT_FLAG_DEVELOPER & params->boot_flags) ?
|
|
KEY_BLOCK_FLAG_DEVELOPER_1 : KEY_BLOCK_FLAG_DEVELOPER_0))) {
|
|
debug("Developer flag mismatch.\n");
|
|
continue;
|
|
}
|
|
if (!(key_block->key_block_flags &&
|
|
((BOOT_FLAG_RECOVERY & params->boot_flags) ?
|
|
KEY_BLOCK_FLAG_RECOVERY_1 : KEY_BLOCK_FLAG_RECOVERY_0))) {
|
|
debug("Recovery flag mismatch.\n");
|
|
continue;
|
|
}
|
|
|
|
/* Check for rollback of key version. Note this is implicitly
|
|
* skipped in recovery and developer modes because those set
|
|
* key_version=0 above. */
|
|
key_version = key_block->data_key.key_version;
|
|
if (key_version < tpm_key_version) {
|
|
debug("Key version too old.\n");
|
|
continue;
|
|
}
|
|
|
|
/* Get the key for preamble/data verification from the key block */
|
|
data_key = PublicKeyToRSA(&key_block->data_key);
|
|
if (!data_key)
|
|
continue;
|
|
|
|
/* Verify the preamble, which follows the key block */
|
|
preamble = (VbKernelPreambleHeader*)(kbuf + key_block->key_block_size);
|
|
if ((0 != VerifyKernelPreamble2(preamble,
|
|
KBUF_SIZE - key_block->key_block_size,
|
|
data_key))) {
|
|
debug("Preamble verification failed.\n");
|
|
RSAPublicKeyFree(data_key);
|
|
continue;
|
|
}
|
|
|
|
/* Check for rollback of kernel version. Note this is implicitly
|
|
* skipped in recovery and developer modes because those set
|
|
* key_version=0 and kernel_version=0 above. */
|
|
if (key_version == tpm_key_version &&
|
|
preamble->kernel_version < tpm_kernel_version) {
|
|
debug("Kernel version too low.\n");
|
|
RSAPublicKeyFree(data_key);
|
|
continue;
|
|
}
|
|
|
|
debug("Kernel preamble is good.\n");
|
|
|
|
/* Check for lowest key version from a valid header. */
|
|
if (lowest_key_version > key_version) {
|
|
lowest_key_version = key_version;
|
|
lowest_kernel_version = preamble->kernel_version;
|
|
}
|
|
else if (lowest_key_version == key_version &&
|
|
lowest_kernel_version > preamble->kernel_version) {
|
|
lowest_kernel_version = preamble->kernel_version;
|
|
}
|
|
|
|
/* If we already have a good kernel, no need to read another
|
|
* one; we only needed to look at the versions to check for
|
|
* rollback. */
|
|
if (-1 != good_partition)
|
|
continue;
|
|
|
|
/* Verify body load address matches what we expect */
|
|
if ((preamble->body_load_address != (size_t)params->kernel_buffer) &&
|
|
!(params->boot_flags & BOOT_FLAG_SKIP_ADDR_CHECK)) {
|
|
debug("Wrong body load address.\n");
|
|
RSAPublicKeyFree(data_key);
|
|
continue;
|
|
}
|
|
|
|
/* Verify kernel body starts at a multiple of the sector size. */
|
|
body_offset = key_block->key_block_size + preamble->preamble_size;
|
|
if (0 != body_offset % blba) {
|
|
debug("Kernel body not at multiple of sector size.\n");
|
|
RSAPublicKeyFree(data_key);
|
|
continue;
|
|
}
|
|
|
|
/* Verify kernel body fits in the partition */
|
|
if (body_offset + preamble->body_signature.data_size >
|
|
part_size * blba) {
|
|
debug("Kernel body doesn't fit in partition.\n");
|
|
RSAPublicKeyFree(data_key);
|
|
continue;
|
|
}
|
|
|
|
/* Read the kernel data */
|
|
if (0 != BootDeviceReadLBA(
|
|
part_start + (body_offset / blba),
|
|
(preamble->body_signature.data_size + blba - 1) / blba,
|
|
params->kernel_buffer)) {
|
|
debug("Unable to read kernel data.\n");
|
|
RSAPublicKeyFree(data_key);
|
|
continue;
|
|
}
|
|
|
|
/* Verify kernel data */
|
|
if (0 != VerifyData((const uint8_t*)params->kernel_buffer,
|
|
&preamble->body_signature, data_key)) {
|
|
debug("Kernel data verification failed.\n");
|
|
RSAPublicKeyFree(data_key);
|
|
continue;
|
|
}
|
|
|
|
/* Done with the kernel signing key, so can free it now */
|
|
RSAPublicKeyFree(data_key);
|
|
|
|
/* If we're still here, the kernel is valid. */
|
|
/* Save the first good partition we find; that's the one we'll boot */
|
|
debug("Partiton is good.\n");
|
|
good_partition = gpt.current_kernel;
|
|
params->partition_number = gpt.current_kernel;
|
|
params->bootloader_address = preamble->bootloader_address;
|
|
params->bootloader_size = preamble->bootloader_size;
|
|
/* If we're in developer or recovery mode, there's no rollback
|
|
* protection, so we can stop at the first valid kernel. */
|
|
if (!is_normal)
|
|
break;
|
|
|
|
/* Otherwise, we're in normal boot mode, so we do care about the
|
|
* key index in the TPM. If the good partition's key version is
|
|
* the same as the tpm, then the TPM doesn't need updating; we
|
|
* can stop now. Otherwise, we'll check all the other headers
|
|
* to see if they contain a newer key. */
|
|
if (key_version == tpm_key_version &&
|
|
preamble->kernel_version == tpm_kernel_version)
|
|
break;
|
|
} /* while(GptNextKernelEntry) */
|
|
} while(0);
|
|
|
|
/* Free kernel buffer */
|
|
if (kbuf)
|
|
Free(kbuf);
|
|
|
|
/* Write and free GPT data */
|
|
WriteAndFreeGptData(&gpt);
|
|
|
|
/* Handle finding a good partition */
|
|
if (good_partition >= 0) {
|
|
|
|
/* See if we need to update the TPM */
|
|
if (is_normal) {
|
|
/* We only update the TPM in normal boot mode. In developer
|
|
* mode, the kernel is self-signed by the developer, so we can't
|
|
* trust the key version and wouldn't want to roll the TPM
|
|
* forward. In recovery mode, the TPM stays PP-unlocked, so
|
|
* anything we write gets blown away by the firmware when we go
|
|
* back to normal mode. */
|
|
if ((lowest_key_version > tpm_key_version) ||
|
|
(lowest_key_version == tpm_key_version &&
|
|
lowest_kernel_version > tpm_kernel_version)) {
|
|
if (0 != WriteStoredVersions(KERNEL_VERSIONS,
|
|
lowest_key_version,
|
|
lowest_kernel_version))
|
|
return LOAD_KERNEL_RECOVERY;
|
|
}
|
|
}
|
|
|
|
if (!(BOOT_FLAG_RECOVERY & params->boot_flags)) {
|
|
/* We can lock the TPM now, since we've decided which kernel we
|
|
* like. If we don't find a good kernel, we leave the TPM
|
|
* unlocked so we can try again on the next boot device. If no
|
|
* kernels are good, we'll reboot to recovery mode, so it's ok to
|
|
* leave the TPM unlocked in that case too.
|
|
*
|
|
* If we're already in recovery mode, we need to leave PP unlocked,
|
|
* so don't lock the kernel versions. */
|
|
if (0 != LockKernelVersionsByLockingPP())
|
|
return LOAD_KERNEL_RECOVERY;
|
|
}
|
|
|
|
/* Success! */
|
|
return LOAD_KERNEL_SUCCESS;
|
|
}
|
|
|
|
// Handle error cases
|
|
if (found_partitions)
|
|
return LOAD_KERNEL_INVALID;
|
|
else
|
|
return LOAD_KERNEL_NOT_FOUND;
|
|
}
|