mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
This is part 3 of the vboot wrapper API refactoring. It replaces the function calls to utility.c functions with new API calls. (It also fixes up some integer type mismatches in cryptolib that were causing warnings on the H2C build; those had been fixed a while ago in H2C but hadn't been propagated across.) BUG=chromium-os:17006 TEST=make && make runtests Change-Id: I771085dcdf79d9592de64f35e3b758111a80dd9f Reviewed-on: http://gerrit.chromium.org/gerrit/3263 Reviewed-by: Simon Glass <sjg@chromium.org> Tested-by: Randall Spangler <rspangler@chromium.org>
185 lines
4.8 KiB
C
185 lines
4.8 KiB
C
/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Implementation of RSA signature verification which uses a pre-processed
|
|
* key for computation. The code extends Android's RSA verification code to
|
|
* support multiple RSA key lengths and hash digest algorithms.
|
|
*/
|
|
|
|
#include "cryptolib.h"
|
|
#include "vboot_api.h"
|
|
#include "utility.h"
|
|
|
|
/* a[] -= mod */
|
|
static void subM(const RSAPublicKey *key, uint32_t *a) {
|
|
int64_t A = 0;
|
|
uint32_t i;
|
|
for (i = 0; i < key->len; ++i) {
|
|
A += (uint64_t)a[i] - key->n[i];
|
|
a[i] = (uint32_t)A;
|
|
A >>= 32;
|
|
}
|
|
}
|
|
|
|
/* return a[] >= mod */
|
|
static int geM(const RSAPublicKey *key, uint32_t *a) {
|
|
uint32_t i;
|
|
for (i = key->len; i;) {
|
|
--i;
|
|
if (a[i] < key->n[i]) return 0;
|
|
if (a[i] > key->n[i]) return 1;
|
|
}
|
|
return 1; /* equal */
|
|
}
|
|
|
|
/* montgomery c[] += a * b[] / R % mod */
|
|
static void montMulAdd(const RSAPublicKey *key,
|
|
uint32_t* c,
|
|
const uint32_t a,
|
|
const uint32_t* b) {
|
|
uint64_t A = UINT64_MULT32(a, b[0]) + c[0];
|
|
uint32_t d0 = (uint32_t)A * key->n0inv;
|
|
uint64_t B = UINT64_MULT32(d0, key->n[0]) + (uint32_t)A;
|
|
uint32_t i;
|
|
|
|
for (i = 1; i < key->len; ++i) {
|
|
A = (A >> 32) + UINT64_MULT32(a, b[i]) + c[i];
|
|
B = (B >> 32) + UINT64_MULT32(d0, key->n[i]) + (uint32_t)A;
|
|
c[i - 1] = (uint32_t)B;
|
|
}
|
|
|
|
A = (A >> 32) + (B >> 32);
|
|
|
|
c[i - 1] = (uint32_t)A;
|
|
|
|
if (A >> 32) {
|
|
subM(key, c);
|
|
}
|
|
}
|
|
|
|
/* montgomery c[] = a[] * b[] / R % mod */
|
|
static void montMul(const RSAPublicKey *key,
|
|
uint32_t* c,
|
|
uint32_t* a,
|
|
uint32_t* b) {
|
|
uint32_t i;
|
|
for (i = 0; i < key->len; ++i) {
|
|
c[i] = 0;
|
|
}
|
|
for (i = 0; i < key->len; ++i) {
|
|
montMulAdd(key, c, a[i], b);
|
|
}
|
|
}
|
|
|
|
/* In-place public exponentiation. (65537}
|
|
* Input and output big-endian byte array in inout.
|
|
*/
|
|
static void modpowF4(const RSAPublicKey *key,
|
|
uint8_t* inout) {
|
|
uint32_t* a = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
|
|
uint32_t* aR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
|
|
uint32_t* aaR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
|
|
|
|
uint32_t* aaa = aaR; /* Re-use location. */
|
|
int i;
|
|
|
|
/* Convert from big endian byte array to little endian word array. */
|
|
for (i = 0; i < (int)key->len; ++i) {
|
|
uint32_t tmp =
|
|
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
|
|
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
|
|
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
|
|
(inout[((key->len - 1 - i) * 4) + 3] << 0);
|
|
a[i] = tmp;
|
|
}
|
|
|
|
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
|
|
for (i = 0; i < 16; i+=2) {
|
|
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
|
|
montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
|
|
}
|
|
montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
|
|
|
|
|
|
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
|
|
if (geM(key, aaa)) {
|
|
subM(key, aaa);
|
|
}
|
|
|
|
/* Convert to bigendian byte array */
|
|
for (i = (int)key->len - 1; i >= 0; --i) {
|
|
uint32_t tmp = aaa[i];
|
|
*inout++ = (uint8_t)(tmp >> 24);
|
|
*inout++ = (uint8_t)(tmp >> 16);
|
|
*inout++ = (uint8_t)(tmp >> 8);
|
|
*inout++ = (uint8_t)(tmp >> 0);
|
|
}
|
|
|
|
VbExFree(a);
|
|
VbExFree(aR);
|
|
VbExFree(aaR);
|
|
}
|
|
|
|
/* Verify a RSA PKCS1.5 signature against an expected hash.
|
|
* Returns 0 on failure, 1 on success.
|
|
*/
|
|
int RSAVerify(const RSAPublicKey *key,
|
|
const uint8_t *sig,
|
|
const uint32_t sig_len,
|
|
const uint8_t sig_type,
|
|
const uint8_t *hash) {
|
|
uint8_t* buf;
|
|
const uint8_t* padding;
|
|
int padding_len;
|
|
int success = 1;
|
|
|
|
if (!key || !sig || !hash)
|
|
return 0;
|
|
|
|
if (sig_len != (key->len * sizeof(uint32_t))) {
|
|
VBDEBUG(("Signature is of incorrect length!\n"));
|
|
return 0;
|
|
}
|
|
|
|
if (sig_type >= kNumAlgorithms) {
|
|
VBDEBUG(("Invalid signature type!\n"));
|
|
return 0;
|
|
}
|
|
|
|
if (key->len != siglen_map[sig_type] / sizeof(uint32_t)) {
|
|
VBDEBUG(("Wrong key passed in!\n"));
|
|
return 0;
|
|
}
|
|
|
|
buf = (uint8_t*) VbExMalloc(sig_len);
|
|
if (!buf)
|
|
return 0;
|
|
Memcpy(buf, sig, sig_len);
|
|
|
|
modpowF4(key, buf);
|
|
|
|
/* Determine padding to use depending on the signature type. */
|
|
padding = padding_map[sig_type];
|
|
padding_len = padding_size_map[sig_type];
|
|
|
|
/* Even though there are probably no timing issues here, we use
|
|
* SafeMemcmp() just to be on the safe side. */
|
|
|
|
/* Check pkcs1.5 padding bytes. */
|
|
if (SafeMemcmp(buf, padding, padding_len)) {
|
|
VBDEBUG(("In RSAVerify(): Padding check failed!\n"));
|
|
success = 0;
|
|
}
|
|
|
|
/* Check hash. */
|
|
if (SafeMemcmp(buf + padding_len, hash, sig_len - padding_len)) {
|
|
VBDEBUG(("In RSAVerify(): Hash check failed!\n"));
|
|
success = 0;
|
|
}
|
|
VbExFree(buf);
|
|
|
|
return success;
|
|
}
|