Files
OpenCellular/board/twinkie/simpletrace.c
Dawei Li 405ac32148 twinkie_sink: allow twinkie commands in the sink mode twinkie
Previously, the "twinkie" commands are only avaible in sniffer/normal
mode. By allowing the twinkie commands in sink mode. We can
do more testings in the sink mode. The following important commands
are now available in sink mode:
twinkie bufrd, twinkie bufwr, twinkie fsm, twinkie send.
With these commands, we can command sink mode twinkie to send
arbitrary USB PD packets, and see how the target devices respond.

Since sink mode and sniffer mode may have conflicts with each
other, the commands may not behave in the same way as in sniffer
mode. See the #ifdef HAS_TASK_SNIFFER ... #endif blocks for details.

Signed-off-by: Dawei Li <daweili@google.com>

Change-Id: I06d4a7674d9aa897d09d4a2e6f2410f2c84f8f4b
Reviewed-on: https://chromium-review.googlesource.com/294956
Commit-Ready: Sheng-liang Song <ssl@chromium.org>
Tested-by: Dawei Li <daweili@google.com>
Reviewed-by: Sheng-liang Song <ssl@chromium.org>
2015-08-28 01:19:33 -07:00

287 lines
7.1 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "adc.h"
#include "common.h"
#include "console.h"
#include "dma.h"
#include "gpio.h"
#include "hooks.h"
#include "hwtimer.h"
#include "injector.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "usb_pd.h"
#include "usb_pd_config.h"
#include "util.h"
/* PD packet text tracing state : TRACE_MODE_OFF/RAW/ON */
int trace_mode;
/* The FSM is waiting for the following command (0 == None) */
uint8_t expected_cmd;
static const char * const ctrl_msg_name[] = {
[0] = "RSVD-C0",
[PD_CTRL_GOOD_CRC] = "GOODCRC",
[PD_CTRL_GOTO_MIN] = "GOTOMIN",
[PD_CTRL_ACCEPT] = "ACCEPT",
[PD_CTRL_REJECT] = "REJECT",
[PD_CTRL_PING] = "PING",
[PD_CTRL_PS_RDY] = "PSRDY",
[PD_CTRL_GET_SOURCE_CAP] = "GSRCCAP",
[PD_CTRL_GET_SINK_CAP] = "GSNKCAP",
[PD_CTRL_DR_SWAP] = "DRSWAP",
[PD_CTRL_PR_SWAP] = "PRSWAP",
[PD_CTRL_VCONN_SWAP] = "VCONNSW",
[PD_CTRL_WAIT] = "WAIT",
[PD_CTRL_SOFT_RESET] = "SFT-RST",
[14] = "RSVD-C14",
[15] = "RSVD-C15",
};
static const char * const data_msg_name[] = {
[0] = "RSVD-D0",
[PD_DATA_SOURCE_CAP] = "SRCCAP",
[PD_DATA_REQUEST] = "REQUEST",
[PD_DATA_BIST] = "BIST",
[PD_DATA_SINK_CAP] = "SNKCAP",
/* 5-14 Reserved */
[PD_DATA_VENDOR_DEF] = "VDM",
};
static const char * const svdm_cmd_name[] = {
[CMD_DISCOVER_IDENT] = "DISCID",
[CMD_DISCOVER_SVID] = "DISCSVID",
[CMD_DISCOVER_MODES] = "DISCMODE",
[CMD_ENTER_MODE] = "ENTER",
[CMD_EXIT_MODE] = "EXIT",
[CMD_ATTENTION] = "ATTN",
[CMD_DP_STATUS] = "DPSTAT",
[CMD_DP_CONFIG] = "DPCFG",
};
static const char * const svdm_cmdt_name[] = {
[CMDT_INIT] = "INI",
[CMDT_RSP_ACK] = "ACK",
[CMDT_RSP_NAK] = "NAK",
[CMDT_RSP_BUSY] = "BSY",
};
static void print_pdo(uint32_t word)
{
if ((word & PDO_TYPE_MASK) == PDO_TYPE_BATTERY)
ccprintf(" %dmV/%dmW", ((word>>10)&0x3ff)*50,
(word&0x3ff)*250);
else
ccprintf(" %dmV/%dmA", ((word>>10)&0x3ff)*50,
(word&0x3ff)*10);
}
static void print_rdo(uint32_t word)
{
ccprintf("{%d} %08x", RDO_POS(word), word);
}
static void print_vdo(int idx, uint32_t word)
{
if (idx == 0 && (word & VDO_SVDM_TYPE)) {
const char *cmd = svdm_cmd_name[PD_VDO_CMD(word)];
const char *cmdt = svdm_cmdt_name[PD_VDO_CMDT(word)];
uint16_t vid = PD_VDO_VID(word);
if (!cmd)
cmd = "????";
ccprintf(" V%04x:%s,%s:%08x", vid, cmd, cmdt, word);
} else {
ccprintf(" %08x", word);
}
}
static void print_packet(int head, uint32_t *payload)
{
int i;
int cnt = PD_HEADER_CNT(head);
int typ = PD_HEADER_TYPE(head);
int id = PD_HEADER_ID(head);
const char *name;
const char *prole;
if (trace_mode == TRACE_MODE_RAW) {
ccprintf("%T[%04x]", head);
for (i = 0; i < cnt; i++)
ccprintf(" %08x", payload[i]);
ccputs("\n");
return;
}
name = cnt ? data_msg_name[typ] : ctrl_msg_name[typ];
prole = head & (PD_ROLE_SOURCE << 8) ? "SRC" : "SNK";
ccprintf("%T %s/%d [%04x]%s", prole, id, head, name);
if (!cnt) { /* Control message : we are done */
ccputs("\n");
return;
}
/* Print payload for data message */
for (i = 0; i < cnt; i++)
switch (typ) {
case PD_DATA_SOURCE_CAP:
case PD_DATA_SINK_CAP:
print_pdo(payload[i]);
break;
case PD_DATA_REQUEST:
print_rdo(payload[i]);
break;
case PD_DATA_BIST:
ccprintf("mode %d cnt %04x", payload[i] >> 28,
payload[i] & 0xffff);
break;
case PD_DATA_VENDOR_DEF:
print_vdo(i, payload[i]);
break;
default:
ccprintf(" %08x", payload[i]);
}
ccputs("\n");
}
static void print_error(enum pd_rx_errors err)
{
if (err == PD_RX_ERR_INVAL)
ccprintf("%T TMOUT\n");
else if (err == PD_RX_ERR_HARD_RESET)
ccprintf("%T HARD-RST\n");
else if (err == PD_RX_ERR_UNSUPPORTED_SOP)
ccprintf("%T SOP*\n");
else
ccprintf("ERR %d\n", err);
}
/* keep track of RX edge timing in order to trigger receive */
static timestamp_t rx_edge_ts[2][PD_RX_TRANSITION_COUNT];
static int rx_edge_ts_idx[2];
void rx_event(void)
{
int pending, i;
int next_idx;
pending = STM32_EXTI_PR;
/* Iterate over the 2 CC lines */
for (i = 0; i < 2; i++) {
if (pending & (1 << (21 + i))) {
rx_edge_ts[i][rx_edge_ts_idx[i]].val = get_time().val;
next_idx = (rx_edge_ts_idx[i] ==
PD_RX_TRANSITION_COUNT - 1) ?
0 : rx_edge_ts_idx[i] + 1;
/*
* If we have seen enough edges in a certain amount of
* time, then trigger RX start.
*/
if ((rx_edge_ts[i][rx_edge_ts_idx[i]].val -
rx_edge_ts[i][next_idx].val)
< PD_RX_TRANSITION_WINDOW) {
/* acquire the message only on the active CC */
STM32_COMP_CSR &= ~(i ? STM32_COMP_CMP1EN
: STM32_COMP_CMP2EN);
/* start sampling */
pd_rx_start(0);
/*
* ignore the comparator IRQ until we are done
* with current message
*/
pd_rx_disable_monitoring(0);
/* trigger the analysis in the task */
#ifdef HAS_TASK_SNIFFER
task_set_event(TASK_ID_SNIFFER, 1 << i, 0);
#endif
/* start reception only one CC line */
break;
} else {
/* do not trigger RX start, just clear int */
STM32_EXTI_PR = EXTI_COMP_MASK(0);
}
rx_edge_ts_idx[i] = next_idx;
}
}
}
#ifdef HAS_TASK_SNIFFER
DECLARE_IRQ(STM32_IRQ_COMP, rx_event, 1);
#endif
void trace_packets(void)
{
int head;
uint32_t payload[7];
#ifdef HAS_TASK_SNIFFER
/* Disable sniffer DMA configuration */
dma_disable(STM32_DMAC_CH6);
dma_disable(STM32_DMAC_CH7);
task_disable_irq(STM32_IRQ_DMA_CHANNEL_4_7);
/* remove TIM1 CH1/2/3 DMA remapping */
STM32_SYSCFG_CFGR1 &= ~(1 << 28);
#endif
/* "classical" PD RX configuration */
pd_hw_init_rx(0);
pd_select_polarity(0, 0);
/* detect messages on both CCx lines */
STM32_COMP_CSR |= STM32_COMP_CMP2EN | STM32_COMP_CMP1EN;
/* Enable the RX interrupts */
pd_rx_enable_monitoring(0);
while (1) {
task_wait_event(-1);
if (trace_mode == TRACE_MODE_OFF)
break;
/* incoming packet processing */
head = pd_analyze_rx(0, payload);
pd_rx_complete(0);
/* re-enabled detection on both CCx lines */
STM32_COMP_CSR |= STM32_COMP_CMP2EN | STM32_COMP_CMP1EN;
pd_rx_enable_monitoring(0);
/* print the last packet content */
if (head > 0)
print_packet(head, payload);
else
print_error(head);
if (head > 0 && expected_cmd == PD_HEADER_TYPE(head))
task_wake(TASK_ID_CONSOLE);
}
task_disable_irq(STM32_IRQ_COMP);
/* Disable tracer DMA configuration */
dma_disable(STM32_DMAC_CH2);
/* Put back : sniffer RX hardware configuration */
#ifdef HAS_TASK_SNIFFER
sniffer_init();
#endif
}
int expect_packet(int pol, uint8_t cmd, uint32_t timeout_us)
{
uint32_t evt;
expected_cmd = cmd;
evt = task_wait_event(timeout_us);
return !(evt == TASK_EVENT_TIMER);
}
void set_trace_mode(int mode)
{
/* No change */
if (mode == trace_mode)
return;
trace_mode = mode;
/* kick the task to take into account the new value */
#ifdef HAS_TASK_SNIFFER
task_wake(TASK_ID_SNIFFER);
#endif
}