mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
This CL does the following: 1) It adds a SignatureBuf function which uses the OpenSSL library to generate RSA signature. This is more robust than the previous way of invoking the command line "openssl" utility and capturing its output. No more unnecessary temporary files for signature operations. 2) It adds functions that allow direct manipulation of binary verified Firmware and Kernel Image blobs in memory. 3) It changes the structure field members for FirmwareImage to make it consistent with KernelImage. Now it's clearer which key is used when. 4) Minor bug fixes and slightly improved API for dealing verified boot firmware and kernel images. 5) Renames the RSA_verify function to prevent conflicts with OpenSSL since it's linked into the firmware utility binary. Review URL: http://codereview.chromium.org/661353
191 lines
4.8 KiB
C
191 lines
4.8 KiB
C
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Implementation of RSA signature verification which uses a pre-processed
|
|
* key for computation. The code extends Android's RSA verification code to
|
|
* support multiple RSA key lengths and hash digest algorithms.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "padding.h"
|
|
#include "rsa.h"
|
|
#include "utility.h"
|
|
|
|
/* a[] -= mod */
|
|
static void subM(const RSAPublicKey *key, uint32_t *a) {
|
|
int64_t A = 0;
|
|
int i;
|
|
for (i = 0; i < key->len; ++i) {
|
|
A += (uint64_t)a[i] - key->n[i];
|
|
a[i] = (uint32_t)A;
|
|
A >>= 32;
|
|
}
|
|
}
|
|
|
|
/* return a[] >= mod */
|
|
static int geM(const RSAPublicKey *key, uint32_t *a) {
|
|
int i;
|
|
for (i = key->len; i;) {
|
|
--i;
|
|
if (a[i] < key->n[i]) return 0;
|
|
if (a[i] > key->n[i]) return 1;
|
|
}
|
|
return 1; /* equal */
|
|
}
|
|
|
|
/* montgomery c[] += a * b[] / R % mod */
|
|
static void montMulAdd(const RSAPublicKey *key,
|
|
uint32_t* c,
|
|
const uint32_t a,
|
|
const uint32_t* b) {
|
|
uint64_t A = (uint64_t)a * b[0] + c[0];
|
|
uint32_t d0 = (uint32_t)A * key->n0inv;
|
|
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
|
|
int i;
|
|
|
|
for (i = 1; i < key->len; ++i) {
|
|
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
|
|
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
|
|
c[i - 1] = (uint32_t)B;
|
|
}
|
|
|
|
A = (A >> 32) + (B >> 32);
|
|
|
|
c[i - 1] = (uint32_t)A;
|
|
|
|
if (A >> 32) {
|
|
subM(key, c);
|
|
}
|
|
}
|
|
|
|
/* montgomery c[] = a[] * b[] / R % mod */
|
|
static void montMul(const RSAPublicKey *key,
|
|
uint32_t* c,
|
|
uint32_t* a,
|
|
uint32_t* b) {
|
|
int i;
|
|
for (i = 0; i < key->len; ++i) {
|
|
c[i] = 0;
|
|
}
|
|
for (i = 0; i < key->len; ++i) {
|
|
montMulAdd(key, c, a[i], b);
|
|
}
|
|
}
|
|
|
|
/* In-place public exponentiation. (65537}
|
|
* Input and output big-endian byte array in inout.
|
|
*/
|
|
static void modpowF4(const RSAPublicKey *key,
|
|
uint8_t* inout) {
|
|
uint32_t* a = (uint32_t*) Malloc(key->len * sizeof(uint32_t));
|
|
uint32_t* aR = (uint32_t*) Malloc(key->len * sizeof(uint32_t));
|
|
uint32_t* aaR = (uint32_t*) Malloc(key->len * sizeof(uint32_t));
|
|
|
|
uint32_t* aaa = aaR; /* Re-use location. */
|
|
int i;
|
|
|
|
/* Convert from big endian byte array to little endian word array. */
|
|
for (i = 0; i < key->len; ++i) {
|
|
uint32_t tmp =
|
|
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
|
|
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
|
|
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
|
|
(inout[((key->len - 1 - i) * 4) + 3] << 0);
|
|
a[i] = tmp;
|
|
}
|
|
|
|
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
|
|
for (i = 0; i < 16; i+=2) {
|
|
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
|
|
montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
|
|
}
|
|
montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
|
|
|
|
|
|
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
|
|
if (geM(key, aaa)) {
|
|
subM(key, aaa);
|
|
}
|
|
|
|
/* Convert to bigendian byte array */
|
|
for (i = key->len - 1; i >= 0; --i) {
|
|
uint32_t tmp = aaa[i];
|
|
*inout++ = tmp >> 24;
|
|
*inout++ = tmp >> 16;
|
|
*inout++ = tmp >> 8;
|
|
*inout++ = tmp >> 0;
|
|
}
|
|
|
|
Free(a);
|
|
Free(aR);
|
|
Free(aaR);
|
|
}
|
|
|
|
/* Verify a RSA PKCS1.5 signature against an expected hash.
|
|
* Returns 0 on failure, 1 on success.
|
|
*/
|
|
int RSAVerify(const RSAPublicKey *key,
|
|
const uint8_t *sig,
|
|
const int sig_len,
|
|
const uint8_t sig_type,
|
|
const uint8_t *hash) {
|
|
int i;
|
|
uint8_t* buf;
|
|
const uint8_t* padding;
|
|
int success = 1;
|
|
|
|
if (sig_len != (key->len * sizeof(uint32_t))) {
|
|
fprintf(stderr, "Signature is of incorrect length!\n");
|
|
return 0;
|
|
}
|
|
|
|
if (sig_type >= kNumAlgorithms) {
|
|
fprintf(stderr, "Invalid signature type!\n");
|
|
return 0;
|
|
}
|
|
|
|
if (key->len != siglen_map[sig_type] / sizeof(uint32_t)) {
|
|
fprintf(stderr, "Wrong key passed in!\n");
|
|
return 0;
|
|
}
|
|
|
|
buf = (uint8_t*) Malloc(sig_len);
|
|
Memcpy(buf, sig, sig_len);
|
|
|
|
modpowF4(key, buf);
|
|
|
|
/* Determine padding to use depending on the signature type. */
|
|
padding = padding_map[sig_type];
|
|
|
|
/* Check pkcs1.5 padding bytes. */
|
|
for (i = 0; i < padding_size_map[sig_type]; ++i) {
|
|
if (buf[i] != padding[i]) {
|
|
#ifndef NDEBUG
|
|
/* TODO(gauravsh): Replace with a macro call for logging. */
|
|
fprintf(stderr, "Padding: Expecting = %02x Got = %02x\n", padding[i],
|
|
buf[i]);
|
|
#endif
|
|
success = 0;
|
|
}
|
|
}
|
|
|
|
/* Check if digest matches. */
|
|
for (; i < sig_len; ++i) {
|
|
if (buf[i] != *hash++) {
|
|
#ifndef NDEBUG
|
|
/* TODO(gauravsh): Replace with a macro call for logging. */
|
|
fprintf(stderr, "Digest: Expecting = %02x Got = %02x\n", padding[i],
|
|
buf[i]);
|
|
#endif
|
|
success = 0;
|
|
}
|
|
}
|
|
|
|
Free(buf);
|
|
|
|
return success;
|
|
}
|