Files
OpenCellular/chip/lm4/system.c
Vincent Palatin 7aab81edce force the compiler to use a valid register allocation for irq handlers
When we are calling the re-scheduling routine at the end of an irq
handling routine, we need to ensure that the high registers are not
currently saved on the system stack.
On Cortex-M3/M4, the compiler is normally doing tail-call optimization
there and behaving properly, but this fixes the fact that insanely large
interrupt handling routines where sometimes not compile and not running
properly (aka issue 24515).

This also prepares for one more core-specific DECLARE_IRQ routine on
Cortex-M0.

Note: now on, the IRQ handling routines should no longer be "static".

Signed-off-by: Vincent Palatin <vpalatin@chromium.org>

BRANCH=none
BUG=chrome-os-partner:24515
TEST=make -j buildall
revert the workaround for 24515, see the issue happening only without
this CL.

Change-Id: Ic419369231925568df05815fd079ed191a5446db
Reviewed-on: https://chromium-review.googlesource.com/189153
Reviewed-by: Vic Yang <victoryang@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
Commit-Queue: Vincent Palatin <vpalatin@chromium.org>
Tested-by: Vincent Palatin <vpalatin@chromium.org>
2014-03-11 05:52:37 +00:00

681 lines
16 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* System module for Chrome EC : LM4 hardware specific implementation */
#include "clock.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "host_command.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "timer.h"
#include "util.h"
/* Indices for hibernate data registers */
enum hibdata_index {
HIBDATA_INDEX_SCRATCHPAD, /* General-purpose scratchpad */
HIBDATA_INDEX_WAKE, /* Wake reasons for hibernate */
HIBDATA_INDEX_SAVED_RESET_FLAGS /* Saved reset flags */
};
/* Flags for HIBDATA_INDEX_WAKE */
#define HIBDATA_WAKE_RTC (1 << 0) /* RTC alarm */
#define HIBDATA_WAKE_HARD_RESET (1 << 1) /* Hard reset via short RTC alarm */
#define HIBDATA_WAKE_PIN (1 << 2) /* Wake pin */
/*
* Time to hibernate to trigger a power-on reset. 50 ms is sufficient for the
* EC itself, but we need a longer delay to ensure the rest of the components
* on the same power rail are reset and 5VALW has dropped.
*/
#define HIB_RESET_USEC 1000000
/*
* Convert between microseconds and the hibernation module RTC subsecond
* register which has 15-bit resolution. Divide down both numerator and
* denominator to avoid integer overflow while keeping the math accurate.
*/
#define HIB_RTC_USEC_TO_SUBSEC(us) ((us) * (32768/64) / (1000000/64))
#define HIB_RTC_SUBSEC_TO_USEC(ss) ((ss) * (1000000/64) / (32768/64))
/**
* Wait for a write to commit to a hibernate register.
*
* @return EC_SUCCESS if successful, non-zero if error.
*/
static int wait_for_hibctl_wc(void)
{
int i;
/* Wait for write-capable */
for (i = 0; i < 1000000; i++) {
if (LM4_HIBERNATE_HIBCTL & LM4_HIBCTL_WRC)
return EC_SUCCESS;
}
return EC_ERROR_TIMEOUT;
}
/**
* Read hibernate register at specified index.
*
* @return The value of the register or 0 if invalid index.
*/
static uint32_t hibdata_read(enum hibdata_index index)
{
if (index < 0 || index >= LM4_HIBERNATE_HIBDATA_ENTRIES)
return 0;
return LM4_HIBERNATE_HIBDATA[index];
}
/**
* Write hibernate register at specified index.
*
* @return nonzero if error.
*/
static int hibdata_write(enum hibdata_index index, uint32_t value)
{
int rv;
if (index < 0 || index >= LM4_HIBERNATE_HIBDATA_ENTRIES)
return EC_ERROR_INVAL;
/* Wait for ok-to-write */
rv = wait_for_hibctl_wc();
if (rv != EC_SUCCESS)
return rv;
/* Write register */
LM4_HIBERNATE_HIBDATA[index] = value;
/* Wait for write-complete */
return wait_for_hibctl_wc();
}
static void check_reset_cause(void)
{
uint32_t hib_status = LM4_HIBERNATE_HIBRIS;
uint32_t raw_reset_cause = LM4_SYSTEM_RESC;
uint32_t hib_wake_flags = hibdata_read(HIBDATA_INDEX_WAKE);
uint32_t flags = 0;
/* Clear the reset causes now that we've read them */
LM4_SYSTEM_RESC = 0;
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIC = hib_status;
hibdata_write(HIBDATA_INDEX_WAKE, 0);
if (raw_reset_cause & 0x02) {
/*
* Full power-on reset of chip. This resets the flash
* protection registers to their permanently-stored values.
* Note that this is also triggered by hibernation, because
* that de-powers the chip.
*/
flags |= RESET_FLAG_POWER_ON;
} else if (!flags && (raw_reset_cause & 0x01)) {
/*
* LM4 signals the reset pin in RESC for all power-on resets,
* even though the external pin wasn't asserted. Make setting
* this flag mutually-exclusive with power on flag, so we can
* use it to indicate a keyboard-triggered reset.
*/
flags |= RESET_FLAG_RESET_PIN;
}
if (raw_reset_cause & 0x04)
flags |= RESET_FLAG_BROWNOUT;
if (raw_reset_cause & 0x10)
flags |= RESET_FLAG_SOFT;
if (raw_reset_cause & 0x28) {
/* Watchdog timer 0 or 1 */
flags |= RESET_FLAG_WATCHDOG;
}
/* Handle other raw reset causes */
if (raw_reset_cause && !flags)
flags |= RESET_FLAG_OTHER;
if ((hib_status & 0x09) &&
(hib_wake_flags & HIBDATA_WAKE_HARD_RESET)) {
/* Hibernation caused by software-triggered hard reset */
flags |= RESET_FLAG_HARD;
/* Consume the hibernate reasons so we don't see them below */
hib_status &= ~0x09;
}
if ((hib_status & 0x01) && (hib_wake_flags & HIBDATA_WAKE_RTC))
flags |= RESET_FLAG_RTC_ALARM;
if ((hib_status & 0x08) && (hib_wake_flags & HIBDATA_WAKE_PIN))
flags |= RESET_FLAG_WAKE_PIN;
if (hib_status & 0x04)
flags |= RESET_FLAG_LOW_BATTERY;
/* Restore then clear saved reset flags */
flags |= hibdata_read(HIBDATA_INDEX_SAVED_RESET_FLAGS);
hibdata_write(HIBDATA_INDEX_SAVED_RESET_FLAGS, 0);
system_set_reset_flags(flags);
}
/*
* A3 and earlier chip stepping has a problem accessing flash during shutdown.
* To work around that, we jump to RAM before hibernating. This function must
* live in RAM. It must be called with interrupts disabled, cannot call other
* functions, and can't be declared static (or else the compiler optimizes it
* into the main hibernate function.
*/
void __attribute__((section(".iram.text"))) __enter_hibernate(int hibctl)
{
LM4_HIBERNATE_HIBCTL = hibctl;
while (1)
;
}
/**
* Read the real-time clock.
*
* @param ss_ptr Destination for sub-seconds value, if not null.
*
* @return the real-time clock seconds value.
*/
uint32_t system_get_rtc_sec_subsec(uint32_t *ss_ptr)
{
uint32_t rtc, rtc2;
uint32_t rtcss, rtcss2;
/*
* The hibernate module isn't synchronized, so need to read repeatedly
* to guarantee a valid read.
*/
do {
rtc = LM4_HIBERNATE_HIBRTCC;
rtcss = LM4_HIBERNATE_HIBRTCSS & 0x7fff;
rtcss2 = LM4_HIBERNATE_HIBRTCSS & 0x7fff;
rtc2 = LM4_HIBERNATE_HIBRTCC;
} while (rtc != rtc2 || rtcss != rtcss2);
if (ss_ptr)
*ss_ptr = rtcss;
return rtc;
}
timestamp_t system_get_rtc(void)
{
uint32_t rtc, rtc_ss;
timestamp_t time;
rtc = system_get_rtc_sec_subsec(&rtc_ss);
time.val = ((uint64_t)rtc) * SECOND + HIB_RTC_SUBSEC_TO_USEC(rtc_ss);
return time;
}
/**
* Set the real-time clock.
*
* @param seconds New clock value.
*/
void system_set_rtc(uint32_t seconds)
{
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBRTCLD = seconds;
wait_for_hibctl_wc();
}
/**
* Set the hibernate RTC match time at a given time from now
*
* @param seconds Number of seconds from now for RTC match
* @param microseconds Number of microseconds from now for RTC match
*/
static void set_hibernate_rtc_match_time(uint32_t seconds,
uint32_t microseconds)
{
uint32_t rtc, rtcss;
/*
* Make sure that the requested delay is not less then the
* amount of time it takes to set the RTC match registers,
* otherwise, the match event could be missed.
*/
if (seconds == 0 && microseconds < HIB_SET_RTC_MATCH_DELAY_USEC)
microseconds = HIB_SET_RTC_MATCH_DELAY_USEC;
/* Calculate the wake match */
rtc = system_get_rtc_sec_subsec(&rtcss) + seconds;
rtcss += HIB_RTC_USEC_TO_SUBSEC(microseconds);
if (rtcss > 0x7fff) {
rtc += rtcss >> 15;
rtcss &= 0x7fff;
}
/* Set RTC alarm match */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBRTCM0 = rtc;
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBRTCSS = rtcss << 16;
wait_for_hibctl_wc();
}
/**
* Use hibernate module to set up an RTC interrupt at a given
* time from now
*
* @param seconds Number of seconds before RTC interrupt
* @param microseconds Number of microseconds before RTC interrupt
*/
void system_set_rtc_alarm(uint32_t seconds, uint32_t microseconds)
{
/* Clear pending interrupt */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIC = LM4_HIBERNATE_HIBRIS;
/* Set match time */
set_hibernate_rtc_match_time(seconds, microseconds);
/* Enable RTC interrupt on match */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIM = 1;
/*
* Wait for the write to commit. This ensures that the RTC interrupt
* actually gets enabled. This is important if we're about to switch
* the system to the 30 kHz oscillator, which might prevent the write
* from comitting.
*/
wait_for_hibctl_wc();
}
/**
* Disable and clear the RTC interrupt.
*/
void system_reset_rtc_alarm(void)
{
/* Disable hibernate interrupts */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIM = 0;
/* Clear interrupts */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIC = LM4_HIBERNATE_HIBRIS;
}
/**
* Hibernate module interrupt
*/
void __hibernate_irq(void)
{
system_reset_rtc_alarm();
}
DECLARE_IRQ(LM4_IRQ_HIBERNATE, __hibernate_irq, 1);
/**
* Enable hibernate interrupt
*/
void system_enable_hib_interrupt(void)
{
task_enable_irq(LM4_IRQ_HIBERNATE);
}
/**
* Internal hibernate function.
*
* @param seconds Number of seconds to sleep before RTC alarm
* @param microseconds Number of microseconds to sleep before RTC alarm
* @param flags Additional hibernate wake flags
*/
static void hibernate(uint32_t seconds, uint32_t microseconds, uint32_t flags)
{
uint32_t hibctl;
/* Set up wake reasons and hibernate flags */
hibctl = LM4_HIBERNATE_HIBCTL | LM4_HIBCTL_PINWEN;
if (flags & HIBDATA_WAKE_PIN)
hibctl |= LM4_HIBCTL_PINWEN;
else
hibctl &= ~LM4_HIBCTL_PINWEN;
if (seconds || microseconds) {
hibctl |= LM4_HIBCTL_RTCWEN;
flags |= HIBDATA_WAKE_RTC;
set_hibernate_rtc_match_time(seconds, microseconds);
/* Enable RTC interrupt on match */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIM = 1;
} else {
hibctl &= ~LM4_HIBCTL_RTCWEN;
}
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBCTL = hibctl;
/* Clear pending interrupt */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIC = LM4_HIBERNATE_HIBRIS;
/* Store hibernate flags */
hibdata_write(HIBDATA_INDEX_WAKE, flags);
__enter_hibernate(hibctl | LM4_HIBCTL_HIBREQ);
}
void system_hibernate(uint32_t seconds, uint32_t microseconds)
{
/* Flush console before hibernating */
cflush();
hibernate(seconds, microseconds, HIBDATA_WAKE_PIN);
}
void system_pre_init(void)
{
uint32_t hibctl;
/*
* Enable clocks to the hibernation module in run, sleep,
* and deep sleep modes.
*/
clock_enable_peripheral(CGC_OFFSET_HIB, 0x1, CGC_MODE_ALL);
/*
* Enable the hibernation oscillator, if it's not already enabled.
* This should only need setting if the EC completely lost power (for
* example, the battery was pulled).
*/
if (!(LM4_HIBERNATE_HIBCTL & LM4_HIBCTL_CLK32EN)) {
int i;
/* Enable clock to hibernate module */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBCTL |= LM4_HIBCTL_CLK32EN;
/* Wait for write-complete */
for (i = 0; i < 1000000; i++) {
if (LM4_HIBERNATE_HIBRIS & 0x10)
break;
}
/* Enable and reset RTC */
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBCTL |= LM4_HIBCTL_RTCEN;
system_set_rtc(0);
/* Clear all hibernate data entries */
for (i = 0; i < LM4_HIBERNATE_HIBDATA_ENTRIES; i++)
hibdata_write(i, 0);
}
/*
* Set wake reasons to RTC match and WAKE pin by default.
* Before going in to hibernate, these may change.
*/
hibctl = LM4_HIBERNATE_HIBCTL;
hibctl |= LM4_HIBCTL_RTCWEN;
hibctl |= LM4_HIBCTL_PINWEN;
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBCTL = hibctl;
/*
* Initialize registers after reset to work around LM4 chip errata
* (still present in A3 chip stepping).
*/
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBRTCT = 0x7fff;
wait_for_hibctl_wc();
LM4_HIBERNATE_HIBIM = 0;
check_reset_cause();
/* Initialize bootcfg if needed */
if (LM4_SYSTEM_BOOTCFG != CONFIG_BOOTCFG_VALUE) {
/* read-modify-write */
LM4_FLASH_FMD = (LM4_SYSTEM_BOOTCFG_MASK & LM4_SYSTEM_BOOTCFG)
| (~LM4_SYSTEM_BOOTCFG_MASK & CONFIG_BOOTCFG_VALUE);
LM4_FLASH_FMA = 0x75100000;
LM4_FLASH_FMC = 0xa4420008; /* WRKEY | COMT */
while (LM4_FLASH_FMC & 0x08)
;
}
/* Brown-outs should trigger a reset */
LM4_SYSTEM_PBORCTL |= 0x02;
}
void system_reset(int flags)
{
uint32_t save_flags = 0;
/* Disable interrupts to avoid task swaps during reboot */
interrupt_disable();
/* Save current reset reasons if necessary */
if (flags & SYSTEM_RESET_PRESERVE_FLAGS)
save_flags = system_get_reset_flags() | RESET_FLAG_PRESERVED;
if (flags & SYSTEM_RESET_LEAVE_AP_OFF)
save_flags |= RESET_FLAG_AP_OFF;
hibdata_write(HIBDATA_INDEX_SAVED_RESET_FLAGS, save_flags);
if (flags & SYSTEM_RESET_HARD) {
/*
* Bounce through hibernate to trigger a hard reboot. Do
* not wake on wake pin, since we need the full duration.
*/
hibernate(0, HIB_RESET_USEC, HIBDATA_WAKE_HARD_RESET);
} else
CPU_NVIC_APINT = 0x05fa0004;
/* Spin and wait for reboot; should never return */
while (1)
;
}
int system_set_scratchpad(uint32_t value)
{
return hibdata_write(HIBDATA_INDEX_SCRATCHPAD, value);
}
uint32_t system_get_scratchpad(void)
{
return hibdata_read(HIBDATA_INDEX_SCRATCHPAD);
}
const char *system_get_chip_vendor(void)
{
return "ti";
}
static char to_hex(int x)
{
if (x >= 0 && x <= 9)
return '0' + x;
return 'a' + x - 10;
}
const char *system_get_chip_id_string(void)
{
static char str[15] = "Unknown-";
char *p = str + 8;
uint32_t did = LM4_SYSTEM_DID1 >> 16;
if (*p)
return (const char *)str;
*p = to_hex(did >> 12);
*(p + 1) = to_hex((did >> 8) & 0xf);
*(p + 2) = to_hex((did >> 4) & 0xf);
*(p + 3) = to_hex(did & 0xf);
*(p + 4) = '\0';
return (const char *)str;
}
const char *system_get_raw_chip_name(void)
{
switch ((LM4_SYSTEM_DID1 & 0xffff0000) >> 16) {
case 0x10de:
return "tm4e1g31h6zrb";
case 0x10e2:
return "lm4fsxhh5bb";
case 0x10e3:
return "lm4fs232h5bb";
case 0x10e4:
return "lm4fs99h5bb";
case 0x10e6:
return "lm4fs1ah5bb";
case 0x10ea:
return "lm4fs1gh5bb";
default:
return system_get_chip_id_string();
}
}
const char *system_get_chip_name(void)
{
const char *postfix = "-tm"; /* test mode */
static char str[20];
const char *raw_chip_name = system_get_raw_chip_name();
char *p = str;
if (LM4_TEST_MODE_ENABLED) {
/* Debug mode is enabled. Postfix chip name. */
while (*raw_chip_name)
*(p++) = *(raw_chip_name++);
while (*postfix)
*(p++) = *(postfix++);
*p = '\0';
return (const char *)str;
} else {
return raw_chip_name;
}
}
int system_get_vbnvcontext(uint8_t *block)
{
return EC_ERROR_UNIMPLEMENTED;
}
int system_set_vbnvcontext(const uint8_t *block)
{
return EC_ERROR_UNIMPLEMENTED;
}
const char *system_get_chip_revision(void)
{
static char rev[3];
/* Extract the major[15:8] and minor[7:0] revisions. */
rev[0] = 'A' + ((LM4_SYSTEM_DID0 >> 8) & 0xff);
rev[1] = '0' + (LM4_SYSTEM_DID0 & 0xff);
rev[2] = 0;
return rev;
}
/*****************************************************************************/
/* Console commands */
static int command_system_rtc(int argc, char **argv)
{
uint32_t rtc;
uint32_t rtcss;
if (argc == 3 && !strcasecmp(argv[1], "set")) {
char *e;
uint32_t t = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
system_set_rtc(t);
} else if (argc > 1) {
return EC_ERROR_INVAL;
}
rtc = system_get_rtc_sec_subsec(&rtcss);
ccprintf("RTC: 0x%08x.%04x (%d.%06d s)\n",
rtc, rtcss, rtc, HIB_RTC_SUBSEC_TO_USEC(rtcss));
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc, command_system_rtc,
"[set <seconds>]",
"Get/set real-time clock",
NULL);
#ifdef CONFIG_CMD_RTC_ALARM
/**
* Test the RTC alarm by setting an interrupt on RTC match.
*/
static int command_rtc_alarm_test(int argc, char **argv)
{
int s = 1, us = 0;
char *e;
ccprintf("Setting RTC alarm\n");
system_enable_hib_interrupt();
if (argc > 1) {
s = strtoi(argv[1], &e, 10);
if (*e)
return EC_ERROR_PARAM1;
}
if (argc > 2) {
us = strtoi(argv[2], &e, 10);
if (*e)
return EC_ERROR_PARAM2;
}
system_set_rtc_alarm(s, us);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(rtc_alarm, command_rtc_alarm_test,
"[seconds [microseconds]]",
"Test alarm",
NULL);
#endif /* CONFIG_CMD_RTC_ALARM */
/*****************************************************************************/
/* Host commands */
static int system_rtc_get_value(struct host_cmd_handler_args *args)
{
struct ec_response_rtc *r = args->response;
r->time = system_get_rtc_sec_subsec(NULL);
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_GET_VALUE,
system_rtc_get_value,
EC_VER_MASK(0));
static int system_rtc_set_value(struct host_cmd_handler_args *args)
{
const struct ec_params_rtc *p = args->params;
system_set_rtc(p->time);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_RTC_SET_VALUE,
system_rtc_set_value,
EC_VER_MASK(0));