Files
OpenCellular/chip/lm4/adc.c
Randall Spangler e704c712ad Better help for console commands
Additional help messages and usage are gated by
CONFIG_CONSOLE_CMDHELP, so we can turn it on if there's space (adds
about 3KB to image size) and turn it off when there isn't.

Signed-off-by: Randall Spangler <rspangler@chromium.org>

BUG=none
TEST=manual

1) help
2) help list
3) help gpioset
4) gpioset -> wrong number of params
5) gpioset fred 0 -> param1 bad
6) gpioset cpu_prochot fred -> param2 bad

Change-Id: Ibe99f37212020f763ebe65a068e6aa83a809a370
2012-05-25 13:34:06 -07:00

247 lines
6.1 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* LM4-specific ADC module for Chrome EC */
#include "adc.h"
#include "console.h"
#include "gpio.h"
#include "hooks.h"
#include "lm4_adc.h"
#include "registers.h"
#include "task.h"
#include "timer.h"
#include "util.h"
extern const struct adc_t adc_channels[ADC_CH_COUNT];
static task_id_t task_waiting_on_ss[LM4_ADC_SEQ_COUNT];
/* GPIO port and mask for AINs. */
const uint32_t ain_port[24][2] = {
{LM4_GPIO_E, (1<<3)},
{LM4_GPIO_E, (1<<2)},
{LM4_GPIO_E, (1<<1)},
{LM4_GPIO_E, (1<<0)},
{LM4_GPIO_D, (1<<7)},
{LM4_GPIO_D, (1<<6)},
{LM4_GPIO_D, (1<<5)},
{LM4_GPIO_D, (1<<4)},
{LM4_GPIO_E, (1<<5)},
{LM4_GPIO_E, (1<<4)},
{LM4_GPIO_B, (1<<4)},
{LM4_GPIO_B, (1<<5)},
{LM4_GPIO_D, (1<<3)},
{LM4_GPIO_D, (1<<2)},
{LM4_GPIO_D, (1<<1)},
{LM4_GPIO_D, (1<<0)},
{LM4_GPIO_K, (1<<0)},
{LM4_GPIO_K, (1<<1)},
{LM4_GPIO_K, (1<<2)},
{LM4_GPIO_K, (1<<3)},
{LM4_GPIO_E, (1<<7)},
{LM4_GPIO_E, (1<<6)},
{LM4_GPIO_N, (1<<1)},
{LM4_GPIO_N, (1<<0)},
};
static void configure_gpio(void)
{
int i;
volatile uint32_t scratch __attribute__((unused));
/* Enable GPIOE module and delay a few clocks */
LM4_SYSTEM_RCGCGPIO |= 0x0010;
scratch = LM4_SYSTEM_RCGCGPIO;
/* Use analog function for AIN */
for (i = 0; i < ADC_CH_COUNT; ++i) {
int id = adc_channels[i].channel;
if (id != LM4_AIN_NONE)
gpio_set_alternate_function(ain_port[id][0],
ain_port[id][1],
1);
}
}
int lm4_adc_flush_and_read(enum lm4_adc_sequencer seq)
{
/* TODO: right now we have only a single channel so this is
* simple. When we have multiple channels, should we...
*
* 1) Read them all using a timer interrupt, and then return
* the most recent value? This is lowest-latency for the
* caller, but won't return accurate data if read frequently.
*
* 2) Reserve SS3 for reading a single value, and configure it
* on each read? Needs mutex if we could have multiple
* callers; doesn't matter if just used for debugging.
*
* 3) Both? */
volatile uint32_t scratch __attribute__((unused));
int event;
/* Empty the FIFO of any previous results */
while (!(LM4_ADC_SSFSTAT(seq) & 0x100))
scratch = LM4_ADC_SSFIFO(seq);
/* TODO: This assumes we don't have multiple tasks accessing
* the same sequencer. Add mutex lock if needed. */
task_waiting_on_ss[seq] = task_get_current();
/* Clear the interrupt status */
LM4_ADC_ADCISC |= 0x01 << seq;
/* Initiate sample sequence */
LM4_ADC_ADCPSSI |= 0x01 << seq;
/* Wait for interrupt */
event = task_wait_event(1000000);
task_waiting_on_ss[seq] = TASK_ID_INVALID;
if (event == TASK_EVENT_TIMER)
return ADC_READ_ERROR;
/* Read the FIFO and convert to temperature */
return LM4_ADC_SSFIFO(seq);
}
int lm4_adc_configure(enum lm4_adc_sequencer seq,
int ain_id,
int ssctl)
{
volatile uint32_t scratch __attribute__((unused));
/* TODO: set up clock using ADCCC register? */
/* Configure sample sequencer */
LM4_ADC_ADCACTSS &= ~(0x01 << seq);
/* Trigger sequencer by processor request */
LM4_ADC_ADCEMUX = (LM4_ADC_ADCEMUX & ~(0xf << (seq * 4))) | 0x00;
/* Sample internal temp sensor */
if (ain_id != LM4_AIN_NONE) {
LM4_ADC_SSMUX(seq) = ain_id & 0xf;
LM4_ADC_SSEMUX(seq) = ain_id >> 4;
}
else {
LM4_ADC_SSMUX(seq) = 0x00;
LM4_ADC_SSEMUX(seq) = 0x00;
}
LM4_ADC_SSCTL(seq) = ssctl;
/* Enable sample sequencer */
LM4_ADC_ADCACTSS |= 0x01 << seq;
return EC_SUCCESS;
}
int adc_read_channel(enum adc_channel ch)
{
const struct adc_t *adc = adc_channels + ch;
int rv = lm4_adc_flush_and_read(adc->sequencer);
if (rv == ADC_READ_ERROR)
return ADC_READ_ERROR;
return rv * adc->factor_mul / adc->factor_div + adc->shift;
}
/*****************************************************************************/
/* Interrupt handlers */
/* Handles an interrupt on the specified sample sequencer. */
static void handle_interrupt(int ss)
{
int id = task_waiting_on_ss[ss];
/* Clear the interrupt status */
LM4_ADC_ADCISC = (0x1 << ss);
/* Wake up the task which was waiting on the interrupt, if any */
if (id != TASK_ID_INVALID)
task_wake(id);
}
static void ss0_interrupt(void) { handle_interrupt(0); }
static void ss1_interrupt(void) { handle_interrupt(1); }
static void ss2_interrupt(void) { handle_interrupt(2); }
static void ss3_interrupt(void) { handle_interrupt(3); }
DECLARE_IRQ(LM4_IRQ_ADC0_SS0, ss0_interrupt, 2);
DECLARE_IRQ(LM4_IRQ_ADC0_SS1, ss1_interrupt, 2);
DECLARE_IRQ(LM4_IRQ_ADC0_SS2, ss2_interrupt, 2);
DECLARE_IRQ(LM4_IRQ_ADC0_SS3, ss3_interrupt, 2);
/*****************************************************************************/
/* Console commands */
#ifdef CONSOLE_COMMAND_ECTEMP
static int command_ectemp(int argc, char **argv)
{
int t = adc_read_channel(ADC_CH_EC_TEMP);
ccprintf("EC temperature is %d K = %d C\n", t, t-273);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(ectemp, command_ectemp,
NULL,
"Print EC temperature",
NULL);
#endif
static int command_adc(int argc, char **argv)
{
int i;
for (i = 0; i < ADC_CH_COUNT; ++i)
ccprintf("ADC channel \"%s\" = %d\n",
adc_channels[i].name, adc_read_channel(i));
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(adc, command_adc,
NULL,
"Print ADC channels",
NULL);
/*****************************************************************************/
/* Initialization */
static int adc_init(void)
{
int i;
const struct adc_t *adc;
/* Enable ADC0 module and delay a few clocks */
LM4_SYSTEM_RCGCADC |= 0x01;
udelay(1);
/* Configure GPIOs */
configure_gpio();
/* Use external voltage references (VREFA+, VREFA-) instead of
* VDDA and GNDA. */
LM4_ADC_ADCCTL = 0x01;
/* Use internal oscillator */
LM4_ADC_ADCCC = 0x1;
/* Enable interrupt */
LM4_ADC_ADCIM = 0xF;
task_enable_irq(LM4_IRQ_ADC0_SS0);
task_enable_irq(LM4_IRQ_ADC0_SS1);
task_enable_irq(LM4_IRQ_ADC0_SS2);
task_enable_irq(LM4_IRQ_ADC0_SS3);
/* Initialize ADC sequencer */
for (i = 0; i < ADC_CH_COUNT; ++i) {
adc = adc_channels + i;
lm4_adc_configure(adc->sequencer, adc->channel, adc->flag);
}
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_INIT, adc_init, HOOK_PRIO_DEFAULT);