Files
OpenCellular/common/thermal.c
Vic Yang 23d9defb2b Disable thermal thresholds for TMP006 sensor near CPU
This sensor doesn't provide accurate case temperature. Let's
disable thermal thresholds for the object tempearture reading from this
sensor.

BUG=chrome-os-partner:9599
TEST=Build success. System works fine.

Change-Id: I9408de59a3349f944c5e215085da93f23965ebc9
Reviewed-on: https://gerrit.chromium.org/gerrit/25824
Reviewed-by: Vincent Palatin <vpalatin@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
Commit-Ready: Vic Yang <victoryang@chromium.org>
Tested-by: Vic Yang <victoryang@chromium.org>
2012-06-22 11:12:43 -07:00

329 lines
8.4 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Thermal engine module for Chrome EC */
#include "board.h"
#include "chipset.h"
#include "console.h"
#include "gpio.h"
#include "lpc.h"
#include "ec_commands.h"
#include "pwm.h"
#include "task.h"
#include "temp_sensor.h"
#include "thermal.h"
#include "timer.h"
#include "util.h"
#include "x86_power.h"
/* Defined in board_temp_sensor.c. Must be in the same order as
* in enum temp_sensor_id.
*/
extern const struct temp_sensor_t temp_sensors[TEMP_SENSOR_COUNT];
/* Temperature threshold configuration. Must be in the same order as in
* enum temp_sensor_type. Threshold values for overheated action first.
* Followed by fan speed stepping thresholds. */
static struct thermal_config_t thermal_config[TEMP_SENSOR_TYPE_COUNT] = {
/* TEMP_SENSOR_TYPE_CPU */
{THERMAL_CONFIG_WARNING_ON_FAIL,
{368, 373, 383, 328, 338, 348, 358, 368}},
/* TEMP_SENSOR_TYPE_BOARD */
{THERMAL_CONFIG_NO_FLAG, {THERMAL_THRESHOLD_DISABLE_ALL}},
/* TEMP_SENSOR_TYPE_CASE */
{THERMAL_CONFIG_NO_FLAG, {341, THERMAL_THRESHOLD_DISABLE, 353,
318, 323, 328, 333, 338}},
};
/* Fan speed settings. */
/* Max RPM is about 11000. Setting each step to be 20% of the max RPM. */
static const int fan_speed[THERMAL_FAN_STEPS + 1] = {0, 2200, 4400, 6600,
8800, -1};
/* Number of consecutive overheated events for each temperature sensor. */
static int8_t ot_count[TEMP_SENSOR_COUNT][THRESHOLD_COUNT + THERMAL_FAN_STEPS];
/* Flag that indicate if each threshold is reached.
* Note that higher threshold reached does not necessarily mean lower thresholds
* are reached (since we can disable any threshold.) */
static int8_t overheated[THRESHOLD_COUNT + THERMAL_FAN_STEPS];
static int8_t *fan_threshold_reached = overheated + THRESHOLD_COUNT;
static int fan_ctrl_on = 1;
int thermal_set_threshold(enum temp_sensor_type type, int threshold_id, int value)
{
if (type < 0 || type >= TEMP_SENSOR_TYPE_COUNT)
return -1;
if (threshold_id < 0 ||
threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
return -1;
if (value < 0)
return -1;
thermal_config[type].thresholds[threshold_id] = value;
return EC_SUCCESS;
}
int thermal_get_threshold(enum temp_sensor_type type, int threshold_id)
{
if (type < 0 || type >= TEMP_SENSOR_TYPE_COUNT)
return -1;
if (threshold_id < 0 ||
threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
return -1;
return thermal_config[type].thresholds[threshold_id];
}
int thermal_toggle_auto_fan_ctrl(int auto_fan_on)
{
fan_ctrl_on = auto_fan_on;
return EC_SUCCESS;
}
static void smi_overheated_warning(void)
{
lpc_set_host_events(
EC_HOST_EVENT_MASK(EC_HOST_EVENT_THERMAL_OVERLOAD));
}
static void smi_sensor_failure_warning(void)
{
lpc_set_host_events(
EC_HOST_EVENT_MASK(EC_HOST_EVENT_THERMAL));
}
/* TODO: When we need different overheated action for different boards,
* move these action to board-specific file. (e.g. board_thermal.c)
*/
static void overheated_action(void)
{
if (overheated[THRESHOLD_POWER_DOWN]) {
x86_power_force_shutdown();
return;
}
if (overheated[THRESHOLD_CPU_DOWN])
x86_power_cpu_overheated(1);
else
x86_power_cpu_overheated(0);
if (overheated[THRESHOLD_WARNING]) {
smi_overheated_warning();
chipset_throttle_cpu(1);
}
else
chipset_throttle_cpu(0);
if (fan_ctrl_on) {
int i;
for (i = THERMAL_FAN_STEPS - 1; i >= 0; --i)
if (fan_threshold_reached[i])
break;
pwm_set_fan_target_rpm(fan_speed[i + 1]);
}
}
/* Update counter and check if the counter has reached delay limit.
* Note that we have various delay period to prevent one error value triggering
* overheated action. */
static inline void update_and_check_stat(int temp,
int sensor_id,
int threshold_id)
{
enum temp_sensor_type type = temp_sensors[sensor_id].type;
const struct thermal_config_t *config = thermal_config + type;
const int16_t threshold = config->thresholds[threshold_id];
const int delay = temp_sensors[sensor_id].action_delay_sec;
if (threshold > 0 && temp >= threshold) {
++ot_count[sensor_id][threshold_id];
if (ot_count[sensor_id][threshold_id] >= delay) {
ot_count[sensor_id][threshold_id] = delay;
overheated[threshold_id] = 1;
}
}
else if (ot_count[sensor_id][threshold_id] >= delay &&
temp >= threshold - 3) {
/* Once the threshold is reached, only if the temperature
* drops to 3 degrees below threshold do we deassert
* overheated signal. This is to prevent temperature
* oscillating around the threshold causing threshold
* keep being triggered. */
overheated[threshold_id] = 1;
} else
ot_count[sensor_id][threshold_id] = 0;
}
static void thermal_process(void)
{
int i, j;
int cur_temp;
int flag;
for (i = 0; i < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++i)
overheated[i] = 0;
for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
enum temp_sensor_type type = temp_sensors[i].type;
if (type == TEMP_SENSOR_TYPE_IGNORED)
continue;
flag = thermal_config[type].config_flags;
if (!temp_sensor_powered(i))
continue;
cur_temp = temp_sensor_read(i);
/* Sensor failure. */
if (cur_temp == -1) {
if (flag & THERMAL_CONFIG_WARNING_ON_FAIL)
smi_sensor_failure_warning();
continue;
}
for (j = 0; j < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++j)
update_and_check_stat(cur_temp, i, j);
}
overheated_action();
}
void thermal_task(void)
{
while (1) {
thermal_process();
usleep(1000000);
}
}
/*****************************************************************************/
/* Console commands */
static void print_thermal_config(enum temp_sensor_type type)
{
const struct thermal_config_t *config = thermal_config + type;
ccprintf("Sensor Type %d:\n", type);
ccprintf("\tWarning: %d K\n",
config->thresholds[THRESHOLD_WARNING]);
ccprintf("\tCPU Down: %d K\n",
config->thresholds[THRESHOLD_CPU_DOWN]);
ccprintf("\tPower Down: %d K\n",
config->thresholds[THRESHOLD_POWER_DOWN]);
}
static void print_fan_stepping(enum temp_sensor_type type)
{
const struct thermal_config_t *config = thermal_config + type;
int i;
ccprintf("Sensor Type %d:\n", type);
ccprintf("\tLowest speed: %d RPM\n", fan_speed[0]);
for (i = 0; i < THERMAL_FAN_STEPS; ++i)
ccprintf("\t%3d K: %d RPM\n",
config->thresholds[THRESHOLD_COUNT + i],
fan_speed[i+1]);
}
static int command_thermal_config(int argc, char **argv)
{
char *e;
int sensor_type, threshold_id, value;
if (argc != 2 && argc != 4)
return EC_ERROR_PARAM_COUNT;
sensor_type = strtoi(argv[1], &e, 0);
if (*e || sensor_type < 0 || sensor_type >= TEMP_SENSOR_TYPE_COUNT)
return EC_ERROR_PARAM1;
if (argc == 2) {
print_thermal_config(sensor_type);
return EC_SUCCESS;
}
threshold_id = strtoi(argv[2], &e, 0);
if (*e || threshold_id < 0 || threshold_id >= THRESHOLD_COUNT)
return EC_ERROR_PARAM2;
value = strtoi(argv[3], &e, 0);
if (*e || value < 0)
return EC_ERROR_PARAM3;
thermal_config[sensor_type].thresholds[threshold_id] = value;
ccprintf("Setting threshold %d of sensor type %d to %d\n",
threshold_id, sensor_type, value);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalconf, command_thermal_config,
"sensortype [threshold_id temp]",
"Get/set thermal threshold temp",
NULL);
static int command_fan_config(int argc, char **argv)
{
char *e;
int sensor_type, stepping_id, value;
if (argc != 2 && argc != 4)
return EC_ERROR_PARAM_COUNT;
sensor_type = strtoi(argv[1], &e, 0);
if ((e && *e) || sensor_type < 0 ||
sensor_type >= TEMP_SENSOR_TYPE_COUNT)
return EC_ERROR_PARAM1;
if (argc == 2) {
print_fan_stepping(sensor_type);
return EC_SUCCESS;
}
stepping_id = strtoi(argv[2], &e, 0);
if ((e && *e) || stepping_id < 0 || stepping_id >= THERMAL_FAN_STEPS)
return EC_ERROR_PARAM2;
value = strtoi(argv[3], &e, 0);
if (*e || value < 0)
return EC_ERROR_PARAM3;
thermal_config[sensor_type].thresholds[THRESHOLD_COUNT + stepping_id] =
value;
ccprintf("Setting fan step %d of sensor type %d to %d K\n",
stepping_id, sensor_type, value);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalfan, command_fan_config,
"sensortype [threshold_id rpm]",
"Get/set thermal threshold fan rpm",
NULL);
static int command_thermal_auto_fan_ctrl(int argc, char **argv)
{
return thermal_toggle_auto_fan_ctrl(1);
}
DECLARE_CONSOLE_COMMAND(autofan, command_thermal_auto_fan_ctrl,
NULL,
"Enable thermal fan control",
NULL);