Files
OpenCellular/cgpt/cgpt_show.c
Mike Frysinger 6c18af5017 cgpt: add support for managing the legacy boot gpt bit
Bit 2 in the GPT partition attributes has been allocated as the legacy
bios boot (equivalent to the "active" or "boot" flag in MBR).  If we
try to boot images on newer x86 systems, syslinux dies because it can't
find any GPT partition marked bootable.

Update the various parts of cgpt add & show to manage this bit.  Now we
can run:
	cgpt add -i 12 -B 1 chromiumos_image.bin
And the EFI partition will be marked bootable.

BUG=chromium:644845
TEST=vboot_reference unittests pass
TEST=booted an amd64-generic disk image via USB on a generic laptop
BRANCH=None

Change-Id: I78e17b8df5b0c61e9e2d8a3c703e6d5ad230fe92
Reviewed-on: https://chromium-review.googlesource.com/382411
Commit-Ready: Mike Frysinger <vapier@chromium.org>
Tested-by: Mike Frysinger <vapier@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2016-09-08 15:36:23 -07:00

386 lines
13 KiB
C

// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#define __STDC_FORMAT_MACROS
#include <string.h>
#include "cgpt.h"
#include "cgptlib_internal.h"
#include "crc32.h"
#include "vboot_host.h"
/* Generate output like:
*
* [AB-CD-EF-01] for group = 1
* [ABCD-EF01] for group = 3 (low byte first)
*
* Needs (size*3-1+3) bytes of space in 'buf' (included the tailing '\0').
*/
#define BUFFER_SIZE(size) (size *3 - 1 + 3)
static short Uint8To2Chars(const uint8_t t) {
int h = t >> 4;
int l = t & 0xf;
h = (h >= 0xA) ? h - 0xA + 'A' : h + '0';
l = (l >= 0xA) ? l - 0xA + 'A' : l + '0';
return (h << 8) + l;
}
static void RawDump(const uint8_t *memory, const int size,
char *buf, int group) {
int i, outlen = 0;
buf[outlen++] = '[';
for (i = 0; i < size; ++i) {
short c2 = Uint8To2Chars(memory[i]);
buf[outlen++] = c2 >> 8;
buf[outlen++] = c2 & 0xff;
if (i != (size - 1) && ((i + 1) % group) == 0)
buf[outlen++] = '-';
}
buf[outlen++] = ']';
buf[outlen++] = '\0';
}
/* Output formatters */
#define TITLE_FMT "%12s%12s%8s %s\n"
#define GPT_FMT "%12d%12d%8s %s\n"
#define GPT_MORE "%12s%12s%8s ", "", "", ""
#define PARTITION_FMT "%12d%12d%8d %s\n"
#define PARTITION_MORE "%12s%12s%8s %s%s\n", "", "", ""
void PrintSignature(const char *indent, const char *sig, size_t n, int raw) {
size_t i;
printf("%sSig: ", indent);
if (!raw) {
printf("[");
for (i = 0; i < n; ++i)
printf("%c", sig[i]);
printf("]");
} else {
char *buf = malloc(BUFFER_SIZE(n));
RawDump((uint8_t *)sig, n, buf, 1);
printf("%s", buf);
free(buf);
}
printf("\n");
}
static void HeaderDetails(GptHeader *header, GptEntry *entries,
const char *indent, int raw) {
PrintSignature(indent, header->signature, sizeof(header->signature), raw);
printf("%sRev: 0x%08x\n", indent, header->revision);
printf("%sSize: %d\n", indent, header->size);
printf("%sHeader CRC: 0x%08x %s\n", indent, header->header_crc32,
(HeaderCrc(header) != header->header_crc32) ? "(INVALID)" : "");
printf("%sMy LBA: %lld\n", indent, (long long)header->my_lba);
printf("%sAlternate LBA: %lld\n", indent, (long long)header->alternate_lba);
printf("%sFirst LBA: %lld\n", indent, (long long)header->first_usable_lba);
printf("%sLast LBA: %lld\n", indent, (long long)header->last_usable_lba);
{ /* For disk guid */
char buf[GUID_STRLEN];
GuidToStr(&header->disk_uuid, buf, GUID_STRLEN);
printf("%sDisk UUID: %s\n", indent, buf);
}
printf("%sEntries LBA: %lld\n", indent, (long long)header->entries_lba);
printf("%sNumber of entries: %d\n", indent, header->number_of_entries);
printf("%sSize of entry: %d\n", indent, header->size_of_entry);
printf("%sEntries CRC: 0x%08x %s\n", indent, header->entries_crc32,
header->entries_crc32 !=
Crc32((const uint8_t *)entries,header->size_of_entry *
header->number_of_entries)
? "INVALID" : ""
);
}
void EntryDetails(GptEntry *entry, uint32_t index, int raw) {
char contents[256]; // scratch buffer for formatting output
uint8_t label[GPT_PARTNAME_LEN];
char type[GUID_STRLEN], unique[GUID_STRLEN];
int clen;
UTF16ToUTF8(entry->name, sizeof(entry->name) / sizeof(entry->name[0]),
label, sizeof(label));
require(snprintf(contents, sizeof(contents),
"Label: \"%s\"", label) < sizeof(contents));
printf(PARTITION_FMT, (int)entry->starting_lba,
(int)(entry->ending_lba - entry->starting_lba + 1),
index+1, contents);
if (!raw && CGPT_OK == ResolveType(&entry->type, type)) {
printf(PARTITION_MORE, "Type: ", type);
} else {
GuidToStr(&entry->type, type, GUID_STRLEN);
printf(PARTITION_MORE, "Type: ", type);
}
GuidToStr(&entry->unique, unique, GUID_STRLEN);
printf(PARTITION_MORE, "UUID: ", unique);
clen = 0;
if (!raw) {
if (GuidEqual(&guid_chromeos_kernel, &entry->type)) {
int tries = (entry->attrs.fields.gpt_att &
CGPT_ATTRIBUTE_TRIES_MASK) >>
CGPT_ATTRIBUTE_TRIES_OFFSET;
int successful = (entry->attrs.fields.gpt_att &
CGPT_ATTRIBUTE_SUCCESSFUL_MASK) >>
CGPT_ATTRIBUTE_SUCCESSFUL_OFFSET;
int priority = (entry->attrs.fields.gpt_att &
CGPT_ATTRIBUTE_PRIORITY_MASK) >>
CGPT_ATTRIBUTE_PRIORITY_OFFSET;
clen = snprintf(contents, sizeof(contents),
"priority=%d tries=%d successful=%d ",
priority, tries, successful);
}
if (entry->attrs.fields.system) {
clen += snprintf(contents + clen, sizeof(contents) - clen,
"system=%d ", entry->attrs.fields.system);
require(clen < sizeof(contents));
}
if (entry->attrs.fields.efi_ignore) {
clen += snprintf(contents + clen, sizeof(contents) - clen,
"efi_ignore=%d ", entry->attrs.fields.efi_ignore);
require(clen < sizeof(contents));
}
if (entry->attrs.fields.legacy_boot) {
clen += snprintf(contents + clen, sizeof(contents) - clen,
"legacy_boot=%d ", entry->attrs.fields.legacy_boot);
require(clen < sizeof(contents));
}
} else {
clen = snprintf(contents, sizeof(contents),
"[%x]", entry->attrs.fields.gpt_att);
}
require(clen < sizeof(contents));
if (clen)
printf(PARTITION_MORE, "Attr: ", contents);
}
void EntriesDetails(struct drive *drive, const int secondary, int raw) {
uint32_t i;
for (i = 0; i < GetNumberOfEntries(drive); ++i) {
GptEntry *entry;
entry = GetEntry(&drive->gpt, secondary, i);
if (GuidIsZero(&entry->type))
continue;
EntryDetails(entry, i, raw);
}
}
static int GptShow(struct drive *drive, CgptShowParams *params) {
int gpt_retval;
if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive->gpt))) {
Error("GptSanityCheck() returned %d: %s\n",
gpt_retval, GptError(gpt_retval));
return CGPT_FAILED;
}
if (params->partition) { // show single partition
if (params->partition > GetNumberOfEntries(drive)) {
Error("invalid partition number: %d\n", params->partition);
return CGPT_FAILED;
}
uint32_t index = params->partition - 1;
GptEntry *entry = GetEntry(&drive->gpt, ANY_VALID, index);
char buf[256]; // scratch buffer for string conversion
if (params->single_item) {
switch(params->single_item) {
case 'b':
printf("%" PRId64 "\n", entry->starting_lba);
break;
case 's': {
uint64_t size = 0;
// If these aren't actually defined, don't show anything
if (entry->ending_lba || entry->starting_lba)
size = entry->ending_lba - entry->starting_lba + 1;
printf("%" PRId64 "\n", size);
break;
}
case 't':
GuidToStr(&entry->type, buf, sizeof(buf));
printf("%s\n", buf);
break;
case 'u':
GuidToStr(&entry->unique, buf, sizeof(buf));
printf("%s\n", buf);
break;
case 'l':
UTF16ToUTF8(entry->name, sizeof(entry->name) / sizeof(entry->name[0]),
(uint8_t *)buf, sizeof(buf));
printf("%s\n", buf);
break;
case 'S':
printf("%d\n", GetSuccessful(drive, ANY_VALID, index));
break;
case 'T':
printf("%d\n", GetTries(drive, ANY_VALID, index));
break;
case 'P':
printf("%d\n", GetPriority(drive, ANY_VALID, index));
break;
case 'B':
printf("%d\n", GetLegacyBoot(drive, ANY_VALID, index));
break;
case 'A':
printf("0x%x\n", entry->attrs.fields.gpt_att);
break;
}
} else {
printf(TITLE_FMT, "start", "size", "part", "contents");
EntryDetails(entry, index, params->numeric);
}
} else if (params->quick) { // show all partitions, quickly
uint32_t i;
GptEntry *entry;
char type[GUID_STRLEN];
for (i = 0; i < GetNumberOfEntries(drive); ++i) {
entry = GetEntry(&drive->gpt, ANY_VALID, i);
if (GuidIsZero(&entry->type))
continue;
if (!params->numeric && CGPT_OK == ResolveType(&entry->type, type)) {
} else {
GuidToStr(&entry->type, type, GUID_STRLEN);
}
printf(PARTITION_FMT, (int)entry->starting_lba,
(int)(entry->ending_lba - entry->starting_lba + 1),
i+1, type);
}
} else { // show all partitions
GptEntry *entries;
if (CGPT_OK != ReadPMBR(drive)) {
Error("Unable to read PMBR\n");
return CGPT_FAILED;
}
printf(TITLE_FMT, "start", "size", "part", "contents");
char buf[256]; // buffer for formatted PMBR content
PMBRToStr(&drive->pmbr, buf, sizeof(buf)); // will exit if buf is too small
printf(GPT_FMT, 0, GPT_PMBR_SECTORS, "", buf);
if (drive->gpt.ignored & MASK_PRIMARY) {
printf(GPT_FMT, (int)GPT_PMBR_SECTORS,
(int)GPT_HEADER_SECTORS, "IGNORED", "Pri GPT header");
} else {
if (drive->gpt.valid_headers & MASK_PRIMARY) {
printf(GPT_FMT, (int)GPT_PMBR_SECTORS,
(int)GPT_HEADER_SECTORS, "", "Pri GPT header");
} else {
printf(GPT_FMT, (int)GPT_PMBR_SECTORS,
(int)GPT_HEADER_SECTORS, "INVALID", "Pri GPT header");
}
if (params->debug ||
((drive->gpt.valid_headers & MASK_PRIMARY) && params->verbose)) {
GptHeader *header;
char indent[64];
require(snprintf(indent, sizeof(indent), GPT_MORE) < sizeof(indent));
header = (GptHeader*)drive->gpt.primary_header;
entries = (GptEntry*)drive->gpt.primary_entries;
HeaderDetails(header, entries, indent, params->numeric);
}
GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header;
printf(GPT_FMT, (int)primary_header->entries_lba,
(int)CalculateEntriesSectors(primary_header),
drive->gpt.valid_entries & MASK_PRIMARY ? "" : "INVALID",
"Pri GPT table");
if (params->debug ||
(drive->gpt.valid_entries & MASK_PRIMARY))
EntriesDetails(drive, PRIMARY, params->numeric);
}
/****************************** Secondary *************************/
if (drive->gpt.ignored & MASK_SECONDARY) {
printf(GPT_FMT, (int)(drive->gpt.gpt_drive_sectors - GPT_HEADER_SECTORS),
(int)GPT_HEADER_SECTORS, "IGNORED", "Sec GPT header");
} else {
GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header;
printf(GPT_FMT, (int)secondary_header->entries_lba,
(int)CalculateEntriesSectors(secondary_header),
drive->gpt.valid_entries & MASK_SECONDARY ? "" : "INVALID",
"Sec GPT table");
/* We show secondary table details if any of following is true.
* 1. in debug mode.
* 2. primary table is being ignored
* 3. only secondary is valid.
* 4. secondary is not identical to promary.
*/
if (params->debug || (drive->gpt.ignored & MASK_PRIMARY) ||
((drive->gpt.valid_entries & MASK_SECONDARY) &&
(!(drive->gpt.valid_entries & MASK_PRIMARY) ||
memcmp(drive->gpt.primary_entries, drive->gpt.secondary_entries,
secondary_header->number_of_entries *
secondary_header->size_of_entry)))) {
EntriesDetails(drive, SECONDARY, params->numeric);
}
if (drive->gpt.valid_headers & MASK_SECONDARY) {
printf(GPT_FMT, (int)(drive->gpt.gpt_drive_sectors - GPT_HEADER_SECTORS),
(int)GPT_HEADER_SECTORS, "", "Sec GPT header");
} else {
printf(GPT_FMT, (int)GPT_PMBR_SECTORS,
(int)GPT_HEADER_SECTORS, "INVALID", "Sec GPT header");
}
/* We show secondary header if any of following is true:
* 1. in debug mode.
* 2. only secondary is valid.
* 3. secondary is not synonymous to primary and not ignored.
*/
if (params->debug ||
((drive->gpt.valid_headers & MASK_SECONDARY) &&
(!(drive->gpt.valid_headers & MASK_PRIMARY) ||
!IsSynonymous((GptHeader*)drive->gpt.primary_header,
(GptHeader*)drive->gpt.secondary_header)) &&
params->verbose)) {
GptHeader *header;
char indent[64];
require(snprintf(indent, sizeof(indent), GPT_MORE) < sizeof(indent));
header = (GptHeader*)drive->gpt.secondary_header;
entries = (GptEntry*)drive->gpt.secondary_entries;
HeaderDetails(header, entries, indent, params->numeric);
}
}
}
CheckValid(drive);
return CGPT_OK;
}
int CgptShow(CgptShowParams *params) {
struct drive drive;
if (params == NULL)
return CGPT_FAILED;
if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDONLY,
params->drive_size))
return CGPT_FAILED;
if (GptShow(&drive, params))
return CGPT_FAILED;
DriveClose(&drive, 0);
return CGPT_OK;
}