Files
OpenCellular/chip/g/flash.c
Vadim Bendebury 69fda70a1b g: add a cli command to erase flash INFO1 space
This command is handy in debug images when rollback protection needs
to be reset.

Manufacturing data stored in the last quarter of the INFO1 space is
preserved across the erase session.

BRANCH=cr50
BUG=b:35774863
TEST=built a non-debug image with the first map location in the
     manifest set to zero, booted the new image. Then built and booted
     a debug image with this patch included. Using sysinfo command
     verified that the info map has one location zeroed, then ran
     eraseflashinfo command and checked sysinfo output again. The info
     map shows no more zeroed locations, and tpm still reports statues
     as "manufacutred"

Change-Id: I58e2a6f6371b6ce656c1d6cc373dfdc6f9d9f5be
Signed-off-by: Vadim Bendebury <vbendeb@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/450906
Reviewed-by: Marius Schilder <mschilder@chromium.org>
Reviewed-by: Mary Ruthven <mruthven@chromium.org>
2017-03-09 03:24:02 -08:00

510 lines
13 KiB
C

/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/*
* The SoC's internal flash consists of two separate "banks" of 256K bytes each
* (sometimes called "macros" because of how they're implemented in Verilog).
*
* Each flash bank contains 128 "blocks" or "pages" of 2K bytes each. These
* blocks can be erased individually, or the entire bank can be erased at once.
*
* When the flash content is erased, all its bits are set to 1.
*
* The flash content can be read directly as bytes, halfwords, or words, just
* like any memory region. However, writes can only happen through special
* operations, in units of properly aligned 32-bit words.
*
* The flash controller has a 32-word write buffer. This allows up to 32
* adjacent words (128 bytes) within a bank to be written in one operation.
*
* Multiple writes to the same flash word can be done without first erasing the
* block, however:
*
* A) writes can only change stored bits from 1 to 0, and
*
* B) the manufacturer recommends that no more than two writes be done between
* erase cycles for best results (in terms of reliability, longevity, etc.)
*
* All of this is fairly typical of most flash parts. This next thing is NOT
* typical:
*
* +--------------------------------------------------------------------------+
* + While any write or erase operation is in progress, ALL other access to +
* + that entire bank is stalled. Data reads, instruction fetches, interrupt +
* + vector lookup -- every access blocks until the flash operation finishes. +
* +--------------------------------------------------------------------------+
*
*/
#include "common.h"
#include "console.h"
#include "cryptoc/util.h"
#include "flash.h"
#include "flash_config.h"
#include "flash_info.h"
#include "registers.h"
#include "shared_mem.h"
#include "timer.h"
#include "watchdog.h"
#define CPRINTF(format, args...) cprintf(CC_EXTENSION, format, ## args)
int flash_pre_init(void)
{
struct g_flash_region regions[4];
int i, num_regions;
num_regions = flash_regions_to_enable(regions, ARRAY_SIZE(regions));
for (i = 0; i < num_regions; i++) {
int reg_base;
/* Region range */
reg_base = GBASE(GLOBALSEC) +
GOFFSET(GLOBALSEC, FLASH_REGION2_BASE_ADDR) +
i * 8;
REG32(reg_base) = regions[i].reg_base;
/*
* The hardware requires a value which is 1 less than the
* actual region size.
*/
REG32(reg_base + 4) = regions[i].reg_size - 1;
/* Region permissions. */
reg_base = GBASE(GLOBALSEC) +
GOFFSET(GLOBALSEC, FLASH_REGION2_CTRL) +
i * 4;
REG32(reg_base) = regions[i].reg_perms;
}
return EC_SUCCESS;
}
int flash_physical_get_protect(int bank)
{
return 0; /* Not protected */
}
uint32_t flash_physical_get_protect_flags(void)
{
return 0; /* no flags set */
}
uint32_t flash_physical_get_valid_flags(void)
{
/* These are the flags we're going to pay attention to */
return EC_FLASH_PROTECT_RO_AT_BOOT |
EC_FLASH_PROTECT_RO_NOW |
EC_FLASH_PROTECT_ALL_NOW;
}
uint32_t flash_physical_get_writable_flags(uint32_t cur_flags)
{
return 0; /* no flags writable */
}
int flash_physical_protect_at_boot(uint32_t new_flags)
{
return EC_SUCCESS; /* yeah, I did it. */
}
int flash_physical_protect_now(int all)
{
return EC_SUCCESS; /* yeah, I did it. */
}
enum flash_op {
OP_ERASE_BLOCK,
OP_WRITE_BLOCK,
OP_READ_BLOCK,
};
static int do_flash_op(enum flash_op op, int is_info_bank,
int byte_offset, int words)
{
volatile uint32_t *fsh_pe_control;
uint32_t opcode, tmp, errors;
int retry_count, max_attempts, extra_prog_pulse, i;
int timedelay_us = 100;
uint32_t prev_error = 0;
/* Make sure the smart program/erase algorithms are enabled. */
if (!GREAD(FLASH, FSH_TIMING_PROG_SMART_ALGO_ON) ||
!GREAD(FLASH, FSH_TIMING_ERASE_SMART_ALGO_ON)) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNIMPLEMENTED;
}
/* Error status is self-clearing. Read it until it does (we hope). */
for (i = 0; i < 50; i++) {
tmp = GREAD(FLASH, FSH_ERROR);
if (!tmp)
break;
usleep(timedelay_us);
}
/* If we can't clear the error status register then something is wrong.
*/
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* We have two flash banks. Adjust offset and registers accordingly. */
if (is_info_bank) {
/* Only INFO bank operations are supported. */
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
} else if (byte_offset >= CFG_FLASH_HALF) {
byte_offset -= CFG_FLASH_HALF;
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL1);
} else {
fsh_pe_control = GREG32_ADDR(FLASH, FSH_PE_CONTROL0);
}
/* What are we doing? */
switch (op) {
case OP_ERASE_BLOCK:
#ifndef CR50_DEV
if (is_info_bank)
/* Erasing the INFO bank from the RW section is
* unsupported. */
return EC_ERROR_INVAL;
#endif
opcode = 0x31415927;
words = 0; /* don't care, really */
/* This number is based on the TSMC spec Nme=Terase/Tsme */
max_attempts = 45;
break;
case OP_WRITE_BLOCK:
opcode = 0x27182818;
words--; /* count register is zero-based */
/* This number is based on the TSMC spec Nmp=Tprog/Tsmp */
max_attempts = 9;
break;
case OP_READ_BLOCK:
if (!is_info_bank)
/* This code path only supports reading from
* the INFO bank.
*/
return EC_ERROR_INVAL;
opcode = 0x16021765;
words = 1;
max_attempts = 9;
break;
default:
return EC_ERROR_INVAL;
}
/*
* Set the parameters. For writes, we assume the write buffer is
* already filled before we call this function.
*/
GWRITE_FIELD(FLASH, FSH_TRANS, OFFSET,
byte_offset / 4); /* word offset */
GWRITE_FIELD(FLASH, FSH_TRANS, MAINB, is_info_bank ? 1 : 0);
GWRITE_FIELD(FLASH, FSH_TRANS, SIZE, words);
/* TODO: Make sure this function isn't getting called "too often" in
* between erases.
*/
extra_prog_pulse = 0;
for (retry_count = 0; retry_count < max_attempts; retry_count++) {
/* Kick it off */
GWRITE(FLASH, FSH_PE_EN, 0xb11924e1);
*fsh_pe_control = opcode;
/* Wait for completion. 150ms should be enough
* (crosbug.com/p/45366).
*/
for (i = 0; i < 1500; i++) {
tmp = *fsh_pe_control;
if (!tmp)
break;
usleep(timedelay_us);
}
/* Timed out waiting for control register to clear */
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* Check error status */
errors = GREAD(FLASH, FSH_ERROR);
if (errors && (errors != prev_error)) {
prev_error = errors;
CPRINTF("%s:%d errors %x fsh_pe_control %p\n",
__func__, __LINE__, errors, fsh_pe_control);
}
/* Error status is self-clearing. Read it until it does
* (we hope).
*/
for (i = 0; i < 50; i++) {
tmp = GREAD(FLASH, FSH_ERROR);
if (!tmp)
break;
usleep(timedelay_us);
}
/* If we can't clear the error status register then something
* is wrong.
*/
if (tmp) {
CPRINTF("%s:%d\n", __func__, __LINE__);
return EC_ERROR_UNKNOWN;
}
/* The operation was successful. */
if (!errors) {
/* From the spec:
* "In addition, one more program pulse is needed after
* program verification is passed."
*/
if (op == OP_WRITE_BLOCK && !extra_prog_pulse) {
extra_prog_pulse = 1;
max_attempts++;
continue;
}
return EC_SUCCESS;
}
/* If there were errors after completion retry. */
watchdog_reload();
}
CPRINTF("%s:%d, retry count %d\n", __func__, __LINE__, retry_count);
return EC_ERROR_UNKNOWN;
}
/* Write up to CONFIG_FLASH_WRITE_IDEAL_SIZE bytes at once */
static int write_batch(int byte_offset, int is_info_bank,
int words, const uint8_t *data)
{
volatile uint32_t *fsh_wr_data = GREG32_ADDR(FLASH, FSH_WR_DATA0);
uint32_t val;
int i;
/* Load the write buffer. */
for (i = 0; i < words; i++) {
/*
* We have to write 32-bit values, but we can't guarantee
* alignment for the data. We'll just assemble the word
* manually to avoid alignment faults. Note that we're assuming
* little-endian order here.
*/
val = ((data[3] << 24) | (data[2] << 16) |
(data[1] << 8) | data[0]);
*fsh_wr_data = val;
data += 4;
fsh_wr_data++;
}
return do_flash_op(OP_WRITE_BLOCK, is_info_bank, byte_offset, words);
}
static int flash_physical_write_internal(int byte_offset, int is_info_bank,
int num_bytes, const char *data)
{
int num, ret;
/* The offset and size must be a multiple of CONFIG_FLASH_WRITE_SIZE */
if (byte_offset % CONFIG_FLASH_WRITE_SIZE ||
num_bytes % CONFIG_FLASH_WRITE_SIZE)
return EC_ERROR_INVAL;
while (num_bytes) {
num = MIN(num_bytes, CONFIG_FLASH_WRITE_IDEAL_SIZE);
/*
* Make sure that the write operation will not go
* past a CONFIG_FLASH_ROW_SIZE boundary.
*/
num = MIN(num, CONFIG_FLASH_ROW_SIZE -
byte_offset % CONFIG_FLASH_ROW_SIZE);
ret = write_batch(byte_offset,
is_info_bank,
num / 4, /* word count */
(const uint8_t *)data);
if (ret)
return ret;
num_bytes -= num;
byte_offset += num;
data += num;
}
return EC_SUCCESS;
}
int flash_physical_write(int byte_offset, int num_bytes, const char *data)
{
return flash_physical_write_internal(byte_offset, 0, num_bytes, data);
}
int flash_physical_info_read_word(int byte_offset, uint32_t *dst)
{
int ret;
if (byte_offset % CONFIG_FLASH_WRITE_SIZE)
return EC_ERROR_INVAL;
ret = do_flash_op(OP_READ_BLOCK, 1, byte_offset, 1);
if (ret != EC_SUCCESS)
return ret;
*dst = GREG32(FLASH, FSH_DOUT_VAL1);
return EC_SUCCESS;
}
/*
* Verify that the range's size is power of 2, the range offset is aligned by
* size, and the range does not cross the INFO space boundary.
*/
static int valid_info_range(uint32_t offset, size_t size)
{
if (!size || (size & (size - 1)))
return 0;
if (offset & (size - 1))
return 0;
if ((offset + size) > FLASH_INFO_SIZE)
return 0;
return 1;
}
/* Write access is a superset of read access. */
static int flash_info_configure_access(uint32_t offset,
size_t size, int write_mode)
{
int mask;
if (!valid_info_range(offset, size))
return EC_ERROR_INVAL;
mask = GREG32(GLOBALSEC, FLASH_REGION6_CTRL);
mask |= GC_GLOBALSEC_FLASH_REGION6_CTRL_EN_MASK |
GC_GLOBALSEC_FLASH_REGION6_CTRL_RD_EN_MASK;
if (write_mode)
mask |= GC_GLOBALSEC_FLASH_REGION6_CTRL_WR_EN_MASK;
GREG32(GLOBALSEC, FLASH_REGION6_BASE_ADDR) =
FLASH_INFO_MEMORY_BASE + offset;
GREG32(GLOBALSEC, FLASH_REGION6_SIZE) = size - 1;
GREG32(GLOBALSEC, FLASH_REGION6_CTRL) = mask;
return EC_SUCCESS;
}
int flash_info_read_enable(uint32_t offset, size_t size)
{
return flash_info_configure_access(offset, size, 0);
}
int flash_info_write_enable(uint32_t offset, size_t size)
{
return flash_info_configure_access(offset, size, 1);
}
void flash_info_write_disable(void)
{
GWRITE_FIELD(GLOBALSEC, FLASH_REGION6_CTRL, WR_EN, 0);
}
int flash_info_physical_write(int byte_offset, int num_bytes, const char *data)
{
if (byte_offset < 0 || num_bytes < 0 ||
byte_offset + num_bytes > FLASH_INFO_SIZE ||
(byte_offset | num_bytes) & (CONFIG_FLASH_WRITE_SIZE - 1))
return EC_ERROR_INVAL;
return flash_physical_write_internal(byte_offset, 1, num_bytes, data);
}
int flash_physical_erase(int byte_offset, int num_bytes)
{
int ret;
/* Offset and size must be a multiple of CONFIG_FLASH_ERASE_SIZE */
if (byte_offset % CONFIG_FLASH_ERASE_SIZE ||
num_bytes % CONFIG_FLASH_ERASE_SIZE)
return EC_ERROR_INVAL;
while (num_bytes) {
/* We may be asked to erase multiple banks */
ret = do_flash_op(OP_ERASE_BLOCK,
0, /* not the INFO bank */
byte_offset,
num_bytes / 4); /* word count */
if (ret) {
CPRINTF("Failed to erase block at %x\n", byte_offset);
return ret;
}
num_bytes -= CONFIG_FLASH_ERASE_SIZE;
byte_offset += CONFIG_FLASH_ERASE_SIZE;
}
return EC_SUCCESS;
}
#ifdef CR50_DEV
static int command_erase_flash_info(int argc, char **argv)
{
uint32_t *preserved_manufacture_state;
const size_t manuf_word_count = FLASH_INFO_MANUFACTURE_STATE_SIZE /
sizeof(uint32_t);
int i;
int rv = EC_ERROR_BUSY;
if (shared_mem_acquire(FLASH_INFO_MANUFACTURE_STATE_SIZE,
(char **)&preserved_manufacture_state) !=
EC_SUCCESS) {
ccprintf("Failed to allocate memory for manufacture state!\n");
return rv;
}
flash_info_read_enable(0, 2048);
flash_info_write_enable(0, 2048);
/* Preserve manufacturing information. */
for (i = 0; i < manuf_word_count; i++) {
if (flash_physical_info_read_word
(FLASH_INFO_MANUFACTURE_STATE_OFFSET +
i * sizeof(uint32_t),
preserved_manufacture_state + i) != EC_SUCCESS) {
ccprintf("Failed to read word %d!\n", i);
goto exit;
}
}
if (do_flash_op(OP_ERASE_BLOCK, 1, 0, 512) != EC_SUCCESS) {
ccprintf("Failed to erase info space!\n");
goto exit;
}
if (flash_info_physical_write
(FLASH_INFO_MANUFACTURE_STATE_OFFSET,
FLASH_INFO_MANUFACTURE_STATE_SIZE,
(char *)preserved_manufacture_state) != EC_SUCCESS) {
ccprintf("Failed to restore manufacture state!\n");
goto exit;
}
rv = EC_SUCCESS;
exit:
always_memset(preserved_manufacture_state, 0,
FLASH_INFO_MANUFACTURE_STATE_SIZE);
shared_mem_release(preserved_manufacture_state);
flash_info_write_disable();
return rv;
}
DECLARE_CONSOLE_COMMAND(eraseflashinfo, command_erase_flash_info,
"",
"Erase INFO1 flash space");
#endif