Files
OpenCellular/chip/stm32/uart.c
Randall Spangler f2b56fcb9f Clean up configuring GPIO alternate functions
GPIO alternate functions used to be configured throughout the code,
which made it hard to tell which ones you needed to configure yourself
in board.c.  It also sometimes (chip/lm4/i2c.c) led to GPIOs being
configured as alternate functions even if they weren't used on a given
board.

With this change, every board has a table in board.c which lists ALL
GPIOs which have alternate functions.  This is now the only place
where alternate functions are configured.  Each module then calls
gpio_init_module() to set up its GPIOs.

This also fixes a bug where gpio_set_flags() ignored most of the flags
passed to it (only direction and level were actually used).

On stm32f, gpio_set_alternate() does not exist, and pins are
configured via direct register writes from board.c.  Rather than
attempt to change that in the same CL, I've stubbed out
gpio_set_alternate() for stm32f, and will fix the register writes in a
follow-up CL.

BUG=chrome-os-partner:21618
BRANCH=peppy (fixes I2C1 being initialized even though those pins are used
       for other things)
TEST=boot link, falco, pit, spring

Change-Id: I40f47025d8f767e0723c6b40c80413af9ba8deba
Signed-off-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/64400
2013-08-07 12:43:35 -07:00

180 lines
3.9 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* USART driver for Chrome EC */
#include "common.h"
#include "clock.h"
#include "gpio.h"
#include "hooks.h"
#include "registers.h"
#include "task.h"
#include "uart.h"
#include "util.h"
/* Console USART index */
#define UARTN CONFIG_UART_CONSOLE
static int init_done; /* Initialization done? */
static int should_stop; /* Last TX control action */
int uart_init_done(void)
{
return init_done;
}
void uart_tx_start(void)
{
disable_sleep(SLEEP_MASK_UART);
STM32_USART_CR1(UARTN) |= STM32_USART_CR1_TXEIE;
should_stop = 0;
task_trigger_irq(STM32_IRQ_USART(UARTN));
}
void uart_tx_stop(void)
{
STM32_USART_CR1(UARTN) &= ~STM32_USART_CR1_TXEIE;
should_stop = 1;
enable_sleep(SLEEP_MASK_UART);
}
int uart_tx_stopped(void)
{
return !(STM32_USART_CR1(UARTN) & STM32_USART_CR1_TXEIE);
}
void uart_tx_flush(void)
{
while (!(STM32_USART_SR(UARTN) & STM32_USART_SR_TXE))
;
}
int uart_tx_ready(void)
{
return STM32_USART_SR(UARTN) & STM32_USART_SR_TXE;
}
int uart_rx_available(void)
{
return STM32_USART_SR(UARTN) & STM32_USART_SR_RXNE;
}
void uart_write_char(char c)
{
/* we normally never wait here since uart_write_char is normally called
* when the buffer is ready, excepted when we insert a carriage return
* before a line feed in the interrupt routine.
*/
while (!uart_tx_ready()) ;
STM32_USART_DR(UARTN) = c;
}
int uart_read_char(void)
{
return STM32_USART_DR(UARTN);
}
void uart_disable_interrupt(void)
{
task_disable_irq(STM32_IRQ_USART(UARTN));
}
void uart_enable_interrupt(void)
{
task_enable_irq(STM32_IRQ_USART(UARTN));
}
/* Interrupt handler for console USART */
static void uart_interrupt(void)
{
/*
* Disable the TX empty interrupt before filling the TX buffer since it
* needs an actual write to DR to be cleared.
*/
STM32_USART_CR1(UARTN) &= ~STM32_USART_CR1_TXEIE;
/* Read input FIFO until empty, then fill output FIFO */
uart_process();
/*
* Re-enable TX empty interrupt only if it was not disabled by
* uart_process.
*/
if (!should_stop)
STM32_USART_CR1(UARTN) |= STM32_USART_CR1_TXEIE;
}
DECLARE_IRQ(STM32_IRQ_USART(UARTN), uart_interrupt, 2);
/**
* Handle clock frequency changes
*/
static void uart_freq_change(void)
{
int div = DIV_ROUND_NEAREST(clock_get_freq(), CONFIG_UART_BAUD_RATE);
#ifdef CHIP_FAMILY_stm32l
if (div / 16 > 0) {
/*
* CPU clock is high enough to support x16 oversampling.
* BRR = (div mantissa)<<4 | (4-bit div fraction)
*/
STM32_USART_CR1(UARTN) &= ~STM32_USART_CR1_OVER8;
STM32_USART_BRR(UARTN) = div;
} else {
/*
* CPU clock is low; use x8 oversampling.
* BRR = (div mantissa)<<4 | (3-bit div fraction)
*/
STM32_USART_BRR(UARTN) = ((div / 8) << 4) | (div & 7);
STM32_USART_CR1(UARTN) |= STM32_USART_CR1_OVER8;
}
#else
/* STM32F only supports x16 oversampling */
STM32_USART_BRR(UARTN) = div;
#endif
}
DECLARE_HOOK(HOOK_FREQ_CHANGE, uart_freq_change, HOOK_PRIO_DEFAULT);
void uart_init(void)
{
/* Enable USART clock */
#if (UARTN == 1)
STM32_RCC_APB2ENR |= STM32_RCC_PB2_USART1;
#else
STM32_RCC_APB1ENR |= STM32_RCC_PB1_USART ## UARTN;
#endif
/* Configure GPIOs */
gpio_config_module(MODULE_UART, 1);
/*
* UART enabled, 8 Data bits, oversampling x16, no parity,
* RXNE interrupt, TX and RX enabled.
*/
STM32_USART_CR1(UARTN) =
STM32_USART_CR1_UE | STM32_USART_CR1_RXNEIE |
STM32_USART_CR1_TE | STM32_USART_CR1_RE;
/* 1 stop bit, no fancy stuff */
STM32_USART_CR2(UARTN) = 0x0000;
/* DMA disabled, special modes disabled, error interrupt disabled */
STM32_USART_CR3(UARTN) = 0x0000;
#ifdef CHIP_FAMILY_stm32l
/* Use single-bit sampling */
STM32_USART_CR3(UARTN) |= STM32_USART_CR3_ONEBIT;
#endif
/* Set initial baud rate */
uart_freq_change();
/* Enable interrupts */
task_enable_irq(STM32_IRQ_USART(UARTN));
init_done = 1;
}