Files
OpenCellular/common/uart_buffering.c
Randall Spangler 889f7bdd3b Move input character processing from UART interrupt to console task
Previously, processing of arrow keys and control characters was done
in the interrupt handler itself.  This increased the impact of UART
input on other interrupts and high-priority tasks.  It also makes it
harder to implement DMA-based UART input on STM32L (in an imminent
CL), since the processing affected the circular UART input buffer
in-place.

This change turns uart_buffering.c back into a dumb I/O buffering
module, and puts all the command line editing and history support into
console.c.

Console history is done via a simple array of input lines instead of a
packed circular buffer of characters.  This is a little less
RAM-efficient, but is easier to implement and read.  History depth is
controlled via CONFIG_CONSOLE_HISTORY, and is 3 for STM32F and 8 for
other platforms.  If we really need a greater history depth, we can
look into implementing a packed circular buffer again, but this time
at task time in console.c.  Also added a 'history' command to print
the current console history.

BUG=chrome-os-partner:20485
BRANCH=none
TEST=console_edit unit test passes; 'history' command prints the last commands

Change-Id: I142a0be0d67718c58341e4569f4e2908f191d8b0
Signed-off-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/64363
Reviewed-by: Vic Yang <victoryang@chromium.org>
2013-08-02 17:32:26 -07:00

354 lines
8.1 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Common code to do UART buffering and printing */
#include <stdarg.h>
#include "common.h"
#include "console.h"
#include "host_command.h"
#include "printf.h"
#include "system.h"
#include "task.h"
#include "uart.h"
#include "util.h"
/* Macros to advance in the circular buffers */
#define TX_BUF_NEXT(i) (((i) + 1) & (CONFIG_UART_TX_BUF_SIZE - 1))
#define RX_BUF_NEXT(i) (((i) + 1) & (CONFIG_UART_RX_BUF_SIZE - 1))
#define RX_BUF_PREV(i) (((i) - 1) & (CONFIG_UART_RX_BUF_SIZE - 1))
/* Macros to calculate difference of pointers in the circular buffers. */
#define TX_BUF_DIFF(i, j) (((i) - (j)) & (CONFIG_UART_TX_BUF_SIZE - 1))
#define RX_BUF_DIFF(i, j) (((i) - (j)) & (CONFIG_UART_RX_BUF_SIZE - 1))
/* ASCII control character; for example, CTRL('C') = ^C */
#define CTRL(c) ((c) - '@')
/* Transmit and receive buffers */
static volatile char tx_buf[CONFIG_UART_TX_BUF_SIZE];
static volatile int tx_buf_head;
static volatile int tx_buf_tail;
static volatile char rx_buf[CONFIG_UART_RX_BUF_SIZE];
static volatile int rx_buf_head;
static volatile int rx_buf_tail;
static int tx_snapshot_head;
static int tx_snapshot_tail;
static int uart_suspended;
/**
* Put a single character into the transmit buffer.
*
* Does not enable the transmit interrupt; assumes that happens elsewhere.
*
* @param context Context; ignored.
* @param c Character to write.
* @return 0 if the character was transmitted, 1 if it was dropped.
*/
static int __tx_char(void *context, int c)
{
int tx_buf_next;
/* Do newline to CRLF translation */
if (c == '\n' && __tx_char(NULL, '\r'))
return 1;
tx_buf_next = TX_BUF_NEXT(tx_buf_head);
if (tx_buf_next == tx_buf_tail)
return 1;
tx_buf[tx_buf_head] = c;
tx_buf_head = tx_buf_next;
return 0;
}
/**
* Copy output from buffer until TX fifo full or output buffer empty.
*
* May be called from interrupt context.
*/
static void fill_tx_fifo(void)
{
while (uart_tx_ready() && (tx_buf_head != tx_buf_tail)) {
uart_write_char(tx_buf[tx_buf_tail]);
tx_buf_tail = TX_BUF_NEXT(tx_buf_tail);
}
}
/**
* Helper for UART processing.
*/
void uart_process(void)
{
int got_input = 0;
/* Copy input from buffer until RX fifo empty */
while (uart_rx_available()) {
int c = uart_read_char();
int rx_buf_next = RX_BUF_NEXT(rx_buf_head);
if (c == CTRL('Q')) {
/* Software flow control - XOFF */
uart_suspended = 1;
uart_tx_stop();
} else if (c == CTRL('S')) {
/* Software flow control - XON */
uart_suspended = 0;
if (uart_tx_stopped())
uart_tx_start();
} else if (rx_buf_next != rx_buf_tail) {
/* Buffer all other input */
rx_buf[rx_buf_head] = c;
rx_buf_head = rx_buf_next;
}
got_input = 1;
}
if (got_input)
console_has_input();
if (uart_suspended)
return;
/* Copy output from buffer until TX fifo full or output buffer empty */
fill_tx_fifo();
/* If output buffer is empty, disable transmit interrupt */
if (tx_buf_tail == tx_buf_head)
uart_tx_stop();
}
int uart_putc(int c)
{
int rv = __tx_char(NULL, c);
if (!uart_suspended && uart_tx_stopped())
uart_tx_start();
return rv ? EC_ERROR_OVERFLOW : EC_SUCCESS;
}
int uart_puts(const char *outstr)
{
/* Put all characters in the output buffer */
while (*outstr) {
if (__tx_char(NULL, *outstr++) != 0)
break;
}
if (!uart_suspended && uart_tx_stopped())
uart_tx_start();
/* Successful if we consumed all output */
return *outstr ? EC_ERROR_OVERFLOW : EC_SUCCESS;
}
int uart_vprintf(const char *format, va_list args)
{
int rv = vfnprintf(__tx_char, NULL, format, args);
if (!uart_suspended && uart_tx_stopped())
uart_tx_start();
return rv;
}
int uart_printf(const char *format, ...)
{
int rv;
va_list args;
va_start(args, format);
rv = uart_vprintf(format, args);
va_end(args);
return rv;
}
void uart_flush_output(void)
{
/* If UART is suspended, ignore flush request. */
if (uart_suspended)
return;
/*
* If we're in interrupt context, copy output explicitly, since the
* UART interrupt may not be able to preempt this one.
*/
if (in_interrupt_context()) {
do {
/* Copy until TX fifo full or output buffer empty */
fill_tx_fifo();
/* Wait for transmit FIFO empty */
uart_tx_flush();
} while (tx_buf_head != tx_buf_tail);
return;
}
/* Wait for buffer to empty */
while (tx_buf_head != tx_buf_tail) {
/*
* It's possible we're in some other interrupt, and the
* previous context was doing a printf() or puts() but hadn't
* enabled the UART interrupt. Check if the interrupt is
* disabled, and if so, re-enable and trigger it. Note that
* this check is inside the while loop, so we'll be safe even
* if the context switches away from us to another partial
* printf() and back.
*/
if (uart_tx_stopped())
uart_tx_start();
}
/* Wait for transmit FIFO empty */
uart_tx_flush();
}
void uart_flush_input(void)
{
/* Disable interrupts */
uart_disable_interrupt();
/* Empty the hardware FIFO */
uart_process();
/* Clear the input buffer */
rx_buf_tail = rx_buf_head;
/* Re-enable interrupts */
uart_enable_interrupt();
}
int uart_getc(void)
{
int c;
/* Disable interrupts */
uart_disable_interrupt();
/* Call interrupt handler to empty the hardware FIFO */
uart_process();
if (rx_buf_tail == rx_buf_head) {
c = -1; /* No pending input */
} else {
c = rx_buf[rx_buf_tail];
rx_buf_tail = RX_BUF_NEXT(rx_buf_tail);
}
/* Re-enable interrupts */
uart_enable_interrupt();
return c;
}
int uart_gets(char *dest, int size)
{
int got = 0;
int c;
/* Read characters */
while (got < size - 1) {
c = uart_getc();
/* Stop on input buffer empty */
if (c == -1)
break;
dest[got++] = c;
/* Stop after newline */
if (c == '\n')
break;
}
/* Null-terminate */
dest[got] = '\0';
/* Return the length we got */
return got;
}
/*****************************************************************************/
/* Host commands */
static int host_command_console_snapshot(struct host_cmd_handler_args *args)
{
/*
* Only allowed on unlocked system, since console output contains
* keystroke data.
*/
if (system_is_locked())
return EC_ERROR_ACCESS_DENIED;
/* Assume the whole circular buffer is full */
tx_snapshot_head = tx_buf_head;
tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_head);
/*
* Immediately skip any unused bytes. This doesn't always work,
* because a higher-priority task or interrupt handler can write to the
* buffer while we're scanning it. This is acceptable because this
* command is only for debugging, and the failure mode is a bit of
* garbage at the beginning of the saved output. The saved buffer
* could also be overwritten by the head coming completely back around
* before we finish. The alternative would be to make a full copy of
* the transmit buffer, but that requires a lot of RAM.
*/
while (tx_snapshot_tail != tx_snapshot_head) {
if (tx_buf[tx_snapshot_tail])
break;
tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_tail);
}
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CONSOLE_SNAPSHOT,
host_command_console_snapshot,
EC_VER_MASK(0));
static int host_command_console_read(struct host_cmd_handler_args *args)
{
char *dest = (char *)args->response;
/*
* Only allowed on unlocked system, since console output contains
* keystroke data.
*/
if (system_is_locked())
return EC_ERROR_ACCESS_DENIED;
/* If no snapshot data, return empty response */
if (tx_snapshot_head == tx_snapshot_tail)
return EC_RES_SUCCESS;
/* Copy data to response */
while (tx_snapshot_tail != tx_snapshot_head &&
args->response_size < args->response_max - 1) {
/*
* Copy only non-zero bytes, so that we don't copy unused
* bytes if the buffer hasn't completely rolled at boot.
*/
if (tx_buf[tx_snapshot_tail]) {
*(dest++) = tx_buf[tx_snapshot_tail];
args->response_size++;
}
tx_snapshot_tail = TX_BUF_NEXT(tx_snapshot_tail);
}
/* Null-terminate */
*(dest++) = '\0';
args->response_size++;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_CONSOLE_READ,
host_command_console_read,
EC_VER_MASK(0));