Files
OpenCellular/common/tmp006.c
Randall Spangler e2f8466997 Handle bus errors on thermal I2C bus
1) Properly report I2C errors on TMP006 as error, not device-not-powered.

2) Treat clock timeout and bus-busy I2C status as error (previously ignored).

3) If clock timeout or bus-busy, reset I2C master for that bus to clear the
error.

These should help with systems where the thermal I2C bus gets into a
weird state on suspend/resume.

BUG=chrome-os-partner:16262
BRANCH=link

TEST=boot system; 'battery' and 'temps' should give good info
Then run snanda's suspend_stress_test for a while and repeat.

Change-Id: I534be8236a4d6de82575fe6d33a68502ce0a3a95
Original-Change-Id: Iec5d6bbd357d2e5eb3dc3d361c829f353e996ab6
Signed-off-by: Randall Spangler <rspangler@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/38444
Reviewed-on: https://gerrit.chromium.org/gerrit/38659
Reviewed-by: Yung-Chieh Lo <yjlou@chromium.org>
2012-11-26 14:49:49 -08:00

442 lines
11 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* TMP006 temperature sensor module for Chrome EC */
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "math.h"
#include "task.h"
#include "temp_sensor.h"
#include "tmp006.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_THERMAL, outstr)
#define CPRINTF(format, args...) cprintf(CC_THERMAL, format, ## args)
/* Constants for calculating target object temperatures */
static const float A1 = 1.75e-3f;
static const float A2 = -1.678e-5f;
static const float B0 = -2.94e-5f;
static const float B1 = -5.7e-7f;
static const float B2 = 4.63e-9f;
static const float C2 = 13.4f;
/* Defined in board_temp_sensor.c. */
extern const struct tmp006_t tmp006_sensors[TMP006_COUNT];
/* Flags for tdata->fail */
#define FAIL_INIT (1 << 0) /* Just initialized */
#define FAIL_POWER (1 << 1) /* Sensor not powered */
#define FAIL_I2C (1 << 2) /* I2C communication error */
#define FAIL_NOT_READY (1 << 3) /* Data not ready */
struct tmp006_data_t {
int v; /* Object voltage */
int t[4]; /* Circular buffer of last four die temperatures */
int tidx; /* Index of the current value in t[] */
int fail; /* Fail flags; non-zero if last read failed */
float s0; /* Sensitivity factor */
float b0, b1, b2; /* Coefficients for self-heating correction */
};
static struct tmp006_data_t tmp006_data[TMP006_COUNT];
/**
* Check if sensor has power
*
* @param idx Sensor index
*
* @return non-zero if sensor has power.
*/
static int tmp006_has_power(int idx)
{
/* All TMP006 sensors are powered by VS. */
return gpio_get_level(GPIO_PGOOD_1_8VS);
}
static int tmp006_read_die_temp(const struct tmp006_data_t *tdata,
int *temp_ptr)
{
if (tdata->fail)
return EC_ERROR_UNKNOWN;
/* Return previous die temperature */
*temp_ptr = tdata->t[(tdata->tidx - 1) & 0x3] / 100;
return EC_SUCCESS;
}
/**
* Calculate the remote object temperature.
*
* @param Tdie_i Die temperature in 1/100 K.
* @param Vobj_i Voltage read from register 0. In nV.
* @param tdata TMP006 data for this sensor.
*
* @return Object temperature in 1/100 K.
*/
static int tmp006_calculate_object_temp(int Tdie_i, int Vobj_i,
const struct tmp006_data_t *tdata)
{
float Tdie, Vobj;
float Tx, S, Vos, Vx, fv, Tobj, T4;
int Tobj_i;
Tdie = (float)Tdie_i * 1e-2f;
Vobj = (float)Vobj_i * 1e-9f;
/* Calculate according to TMP006 users guide. */
Tx = Tdie - 298.15f;
/* S is the sensitivity */
S = tdata->s0 * (1.0f + A1 * Tx + A2 * Tx * Tx);
/* Vos is the offset voltage */
Vos = tdata->b0 + tdata->b1 * Tx + tdata->b2 * Tx * Tx;
Vx = Vobj - Vos;
/* fv is Seebeck coefficient f(Vobj) */
fv = Vx + C2 * Vx * Vx;
T4 = Tdie * Tdie * Tdie * Tdie + fv / S;
Tobj = sqrtf(sqrtf(T4));
Tobj_i = (int32_t)(Tobj * 100.0f);
return Tobj_i;
}
/**
* Apply TMP006 temporal correction.
*
* @param T1-T4 Four die temperature readings separated by 1s in 1/100K.
* @param Vobj Voltage read from register 0, in nV.
*
* @return Corrected object voltage in 1/100K.
*/
static int tmp006_correct_object_voltage(int T1, int T2, int T3, int T4,
int Vobj)
{
int Tslope = 3 * T1 + T2 - T3 - 3 * T4;
return Vobj + 296 * Tslope;
}
static int tmp006_read_object_temp(const struct tmp006_data_t *tdata,
int *temp_ptr)
{
int pidx = (tdata->tidx - 1) & 0x3;
int t = tdata->t[pidx];
int v = tdata->v;
if (tdata->fail)
return EC_ERROR_UNKNOWN;
if (!tdata->s0)
return EC_ERROR_NOT_CALIBRATED;
v = tmp006_correct_object_voltage(
t,
tdata->t[(pidx + 3) & 3],
tdata->t[(pidx + 2) & 3],
tdata->t[(pidx + 1) & 3],
v);
*temp_ptr = tmp006_calculate_object_temp(t, v, tdata) / 100;
return EC_SUCCESS;
}
static int tmp006_poll_sensor(int sensor_id)
{
struct tmp006_data_t *tdata = tmp006_data + sensor_id;
int traw, t;
int vraw, v;
int rv;
int addr = tmp006_sensors[sensor_id].addr;
int idx;
if (!tmp006_has_power(sensor_id)) {
tdata->fail |= FAIL_POWER;
return EC_ERROR_UNKNOWN;
}
/*
* If sensor has just initialized and/or has lost power, wait for
* data ready; otherwise, we read garbage data.
*/
if (tdata->fail && (FAIL_POWER | FAIL_INIT)) {
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x02, &v);
if (rv) {
tdata->fail |= FAIL_I2C;
return EC_ERROR_UNKNOWN;
} else if (!(v & 0x80)) {
tdata->fail |= FAIL_NOT_READY;
return EC_ERROR_UNKNOWN;
}
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
if (rv) {
tdata->fail |= FAIL_I2C;
return EC_ERROR_UNKNOWN;
}
/* Convert temperature from raw to 1/100 K */
t = ((int)(int16_t)traw * 100) / 128 + 27300;
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
if (rv) {
tdata->fail |= FAIL_I2C;
return EC_ERROR_UNKNOWN;
}
/* Convert voltage from raw to nV */
v = ((int)(int16_t)vraw * 15625) / 100;
/*
* If last read failed, set the entire temperature history to the
* current temperature. This keeps us from making inaccurate temporal
* corrections based on stale data.
*/
if (tdata->fail) {
for (idx = 0; idx < 4; idx++)
tdata->t[idx] = t;
} else {
idx = tdata->tidx;
tdata->t[idx] = t;
tdata->tidx = (idx + 1) & 3;
}
tdata->v = v;
tdata->fail = 0;
return EC_SUCCESS;
}
int tmp006_get_val(int idx, int *temp_ptr)
{
/*
* Note: idx is a thermal sensor index, where the top N-1 bits are the
* TMP006 index and the bottom bit is (0=die, 1=remote).
*/
int tidx = idx >> 1;
const struct tmp006_data_t *tdata = tmp006_data + tidx;
if (tdata->fail & FAIL_POWER) {
/*
* Sensor isn't powered, or hasn't successfully provided data
* since being powered. Keep reporting not-powered until
* we get good data (which will clear FAIL_POWER) or there is
* an I2C error.
*/
return (tdata->fail & FAIL_I2C) ? EC_ERROR_UNKNOWN :
EC_ERROR_NOT_POWERED;
}
/* Check the low bit to determine which temperature to read. */
if ((idx & 0x1) == 0)
return tmp006_read_die_temp(tdata, temp_ptr);
else
return tmp006_read_object_temp(tdata, temp_ptr);
}
/*****************************************************************************/
/* Hooks */
static void tmp006_poll(void)
{
int i;
for (i = 0; i < TMP006_COUNT; ++i)
tmp006_poll_sensor(i);
}
DECLARE_HOOK(HOOK_SECOND, tmp006_poll, HOOK_PRIO_DEFAULT);
static void tmp006_init(void)
{
int i;
for (i = 0; i < TMP006_COUNT; ++i) {
struct tmp006_data_t *tdata = tmp006_data + i;
/* Report error until we actually read the sensor */
tdata->fail = FAIL_INIT;
/* Use defaults for Bn params */
tdata->b0 = B0;
tdata->b1 = B1;
tdata->b2 = B2;
}
}
DECLARE_HOOK(HOOK_INIT, tmp006_init, HOOK_PRIO_DEFAULT);
/*****************************************************************************/
/* Host commands */
int tmp006_get_calibration(struct host_cmd_handler_args *args)
{
const struct ec_params_tmp006_get_calibration *p = args->params;
struct ec_response_tmp006_get_calibration *r = args->response;
const struct tmp006_data_t *tdata;
if (p->index >= TMP006_COUNT)
return EC_RES_INVALID_PARAM;
tdata = tmp006_data + p->index;
r->s0 = tdata->s0;
r->b0 = tdata->b0;
r->b1 = tdata->b1;
r->b2 = tdata->b2;
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_TMP006_GET_CALIBRATION,
tmp006_get_calibration,
EC_VER_MASK(0));
int tmp006_set_calibration(struct host_cmd_handler_args *args)
{
const struct ec_params_tmp006_set_calibration *p = args->params;
struct tmp006_data_t *tdata;
if (p->index >= TMP006_COUNT)
return EC_RES_INVALID_PARAM;
tdata = tmp006_data + p->index;
tdata->s0 = p->s0;
tdata->b0 = p->b0;
tdata->b1 = p->b1;
tdata->b2 = p->b2;
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_TMP006_SET_CALIBRATION,
tmp006_set_calibration,
EC_VER_MASK(0));
/*****************************************************************************/
/* Console commands */
/**
* Print temperature info for a sensor; used by console command.
*/
static int tmp006_print(int idx)
{
int vraw, v;
int traw, t;
int rv;
int d;
int addr = tmp006_sensors[idx].addr;
ccprintf("Debug data from %s:\n", tmp006_sensors[idx].name);
if (!tmp006_has_power(idx)) {
ccputs("Sensor powered off.\n");
return EC_ERROR_UNKNOWN;
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xfe, &d);
if (rv)
return rv;
ccprintf(" Manufacturer ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xff, &d);
ccprintf(" Device ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x02, &d);
ccprintf(" Config: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
v = ((int)(int16_t)vraw * 15625) / 100;
ccprintf(" Voltage: 0x%04x = %d nV\n", vraw, v);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
t = ((int)(int16_t)traw * 100) / 128;
ccprintf(" Temperature: 0x%04x = %d.%02d C\n",
traw, t / 100, t > 0 ? t % 100 : 100 - (t % 100));
return EC_SUCCESS;
}
static int command_sensor_info(int argc, char **argv)
{
int i;
int rv, rv1;
rv1 = EC_SUCCESS;
for (i = 0; i < TMP006_COUNT; i++) {
rv = tmp006_print(i);
if (rv != EC_SUCCESS)
rv1 = rv;
cflush();
}
return rv1;
}
DECLARE_CONSOLE_COMMAND(tmp006, command_sensor_info,
NULL,
"Print TMP006 sensors",
NULL);
static int command_t6cal(int argc, char **argv)
{
struct tmp006_data_t *tdata;
char *e;
int v;
int i;
if (argc < 2) {
ccprintf("# Name S0 b0"
" b1 b2\n");
for (i = 0; i < TMP006_COUNT; i++) {
tdata = tmp006_data + i;
ccprintf("%d %-11s"
"%7de-17 %7de-8 %7de-10 %7de-12\n",
i, tmp006_sensors[i].name,
(int)(tdata->s0 * 1e17f),
(int)(tdata->b0 * 1e8f),
(int)(tdata->b1 * 1e10f),
(int)(tdata->b2 * 1e12f));
}
return EC_SUCCESS;
}
if (argc != 4)
return EC_ERROR_PARAM_COUNT;
i = strtoi(argv[1], &e, 0);
if (*e || i < 0 || i >= TMP006_COUNT)
return EC_ERROR_PARAM1;
tdata = tmp006_data + i;
v = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
if (!strcasecmp(argv[2], "s0"))
tdata->s0 = (float)v * 1e-17f;
else if (!strcasecmp(argv[2], "b0"))
tdata->b0 = (float)v * 1e-8f;
else if (!strcasecmp(argv[2], "b1"))
tdata->b1 = (float)v * 1e-10f;
else if (!strcasecmp(argv[2], "b2"))
tdata->b2 = (float)v * 1e-12f;
else
return EC_ERROR_PARAM2;
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(t6cal, command_t6cal,
"[<index> <coeff_name> <radix>]",
"Set/print TMP006 calibration",
NULL);