mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-11-24 02:05:01 +00:00
Third time's the charm. Now that we've moved to u-boot-next, this won't break the ARM build. BUG=chromium-os:17006 TEST=make && make runtests; emerge vboot_reference; emerge-tegra2_seaboard chromeos-bootimage Change-Id: Ib4fa26c7a23868dd2ffd2b321ee8dc08c66ea322 Original-Change-Id: I771085dcdf79d9592de64f35e3b758111a80dd9f Original-Reviewed-on: http://gerrit.chromium.org/gerrit/3263 Original-Reviewed-by: Simon Glass <sjg@chromium.org> Reviewed-on: http://gerrit.chromium.org/gerrit/3803 Tested-by: Randall Spangler <rspangler@chromium.org> Reviewed-by: Simon Glass <sjg@chromium.org>
676 lines
23 KiB
C
676 lines
23 KiB
C
/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Functions for loading a kernel from disk.
|
|
* (Firmware portion)
|
|
*/
|
|
|
|
#include "boot_device.h"
|
|
#include "cgptlib.h"
|
|
#include "cgptlib_internal.h"
|
|
#include "gbb_header.h"
|
|
#include "load_kernel_fw.h"
|
|
#include "rollback_index.h"
|
|
#include "utility.h"
|
|
#include "vboot_api.h"
|
|
#include "vboot_common.h"
|
|
#include "vboot_kernel.h"
|
|
|
|
|
|
#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
|
|
#define LOWEST_TPM_VERSION 0xffffffff
|
|
|
|
typedef enum BootMode {
|
|
kBootRecovery = 0, /* Recovery firmware, regardless of dev switch position */
|
|
kBootNormal = 1, /* Normal firmware */
|
|
kBootDev = 2 /* Dev firmware AND dev switch is on */
|
|
} BootMode;
|
|
|
|
|
|
/* Allocates and reads GPT data from the drive. The sector_bytes and
|
|
* drive_sectors fields should be filled on input. The primary and
|
|
* secondary header and entries are filled on output.
|
|
*
|
|
* Returns 0 if successful, 1 if error. */
|
|
int AllocAndReadGptData(GptData* gptdata) {
|
|
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
|
|
/* No data to be written yet */
|
|
gptdata->modified = 0;
|
|
|
|
/* Allocate all buffers */
|
|
gptdata->primary_header = (uint8_t*)VbExMalloc(gptdata->sector_bytes);
|
|
gptdata->secondary_header = (uint8_t*)VbExMalloc(gptdata->sector_bytes);
|
|
gptdata->primary_entries = (uint8_t*)VbExMalloc(TOTAL_ENTRIES_SIZE);
|
|
gptdata->secondary_entries = (uint8_t*)VbExMalloc(TOTAL_ENTRIES_SIZE);
|
|
|
|
if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL ||
|
|
gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL)
|
|
return 1;
|
|
|
|
/* Read data from the drive, skipping the protective MBR */
|
|
if (0 != BootDeviceReadLBA(1, 1, gptdata->primary_header))
|
|
return 1;
|
|
if (0 != BootDeviceReadLBA(2, entries_sectors, gptdata->primary_entries))
|
|
return 1;
|
|
if (0 != BootDeviceReadLBA(gptdata->drive_sectors - entries_sectors - 1,
|
|
entries_sectors, gptdata->secondary_entries))
|
|
return 1;
|
|
if (0 != BootDeviceReadLBA(gptdata->drive_sectors - 1,
|
|
1, gptdata->secondary_header))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Writes any changes for the GPT data back to the drive, then frees
|
|
* the buffers.
|
|
*
|
|
* Returns 0 if successful, 1 if error. */
|
|
int WriteAndFreeGptData(GptData* gptdata) {
|
|
|
|
uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
|
|
|
if (gptdata->primary_header) {
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER1) {
|
|
VBDEBUG(("Updating GPT header 1\n"));
|
|
if (0 != BootDeviceWriteLBA(1, 1, gptdata->primary_header))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->primary_header);
|
|
}
|
|
|
|
if (gptdata->primary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES1) {
|
|
VBDEBUG(("Updating GPT entries 1\n"));
|
|
if (0 != BootDeviceWriteLBA(2, entries_sectors,
|
|
gptdata->primary_entries))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->primary_entries);
|
|
}
|
|
|
|
if (gptdata->secondary_entries) {
|
|
if (gptdata->modified & GPT_MODIFIED_ENTRIES2) {
|
|
VBDEBUG(("Updating GPT header 2\n"));
|
|
if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - entries_sectors - 1,
|
|
entries_sectors, gptdata->secondary_entries))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->secondary_entries);
|
|
}
|
|
|
|
if (gptdata->secondary_header) {
|
|
if (gptdata->modified & GPT_MODIFIED_HEADER2) {
|
|
VBDEBUG(("Updating GPT entries 2\n"));
|
|
if (0 != BootDeviceWriteLBA(gptdata->drive_sectors - 1, 1,
|
|
gptdata->secondary_header))
|
|
return 1;
|
|
}
|
|
VbExFree(gptdata->secondary_header);
|
|
}
|
|
|
|
/* Success */
|
|
return 0;
|
|
}
|
|
|
|
/* disable MSVC warning on const logical expression (as in } while(0);) */
|
|
__pragma(warning(disable: 4127))
|
|
|
|
int LoadKernel(LoadKernelParams* params) {
|
|
VbSharedDataHeader* shared = (VbSharedDataHeader*)params->shared_data_blob;
|
|
VbSharedDataKernelCall* shcall = NULL;
|
|
VbNvContext* vnc = params->nv_context;
|
|
GoogleBinaryBlockHeader* gbb = (GoogleBinaryBlockHeader*)params->gbb_data;
|
|
VbPublicKey* kernel_subkey;
|
|
GptData gpt;
|
|
uint64_t part_start, part_size;
|
|
uint64_t blba;
|
|
uint64_t kbuf_sectors;
|
|
uint8_t* kbuf = NULL;
|
|
int found_partitions = 0;
|
|
int good_partition = -1;
|
|
int good_partition_key_block_valid = 0;
|
|
uint32_t tpm_version = 0;
|
|
uint64_t lowest_version = LOWEST_TPM_VERSION;
|
|
int rec_switch, dev_switch;
|
|
BootMode boot_mode;
|
|
uint32_t test_err = 0;
|
|
uint32_t status;
|
|
|
|
int retval = LOAD_KERNEL_RECOVERY;
|
|
int recovery = VBNV_RECOVERY_RO_UNSPECIFIED;
|
|
uint64_t timer_enter = VbExGetTimer();
|
|
|
|
/* Setup NV storage */
|
|
VbNvSetup(vnc);
|
|
|
|
/* Sanity Checks */
|
|
if (!params ||
|
|
!params->bytes_per_lba ||
|
|
!params->ending_lba ||
|
|
!params->kernel_buffer ||
|
|
!params->kernel_buffer_size) {
|
|
VBDEBUG(("LoadKernel() called with invalid params\n"));
|
|
goto LoadKernelExit;
|
|
}
|
|
|
|
/* Clear output params in case we fail */
|
|
params->partition_number = 0;
|
|
params->bootloader_address = 0;
|
|
params->bootloader_size = 0;
|
|
|
|
/* Calculate switch positions and boot mode */
|
|
rec_switch = (BOOT_FLAG_RECOVERY & params->boot_flags ? 1 : 0);
|
|
dev_switch = (BOOT_FLAG_DEVELOPER & params->boot_flags ? 1 : 0);
|
|
if (rec_switch)
|
|
boot_mode = kBootRecovery;
|
|
else if (BOOT_FLAG_DEV_FIRMWARE & params->boot_flags)
|
|
boot_mode = kBootDev;
|
|
else {
|
|
/* Normal firmware */
|
|
boot_mode = kBootNormal;
|
|
dev_switch = 0; /* Always do a fully verified boot */
|
|
}
|
|
|
|
if (kBootRecovery == boot_mode) {
|
|
/* Initialize the shared data structure, since LoadFirmware() didn't do it
|
|
* for us. */
|
|
if (0 != VbSharedDataInit(shared, params->shared_data_size)) {
|
|
/* Error initializing the shared data, but we can keep going. We just
|
|
* can't use the shared data. */
|
|
VBDEBUG(("Shared data init error\n"));
|
|
params->shared_data_size = 0;
|
|
shared = NULL;
|
|
}
|
|
}
|
|
|
|
if (shared) {
|
|
/* Set up tracking for this call. This wraps around if called many times,
|
|
* so we need to initialize the call entry each time. */
|
|
shcall = shared->lk_calls + (shared->lk_call_count
|
|
& (VBSD_MAX_KERNEL_CALLS - 1));
|
|
Memset(shcall, 0, sizeof(VbSharedDataKernelCall));
|
|
shcall->boot_flags = (uint32_t)params->boot_flags;
|
|
shcall->boot_mode = boot_mode;
|
|
shcall->sector_size = (uint32_t)params->bytes_per_lba;
|
|
shcall->sector_count = params->ending_lba + 1;
|
|
shared->lk_call_count++;
|
|
}
|
|
|
|
/* Handle test errors */
|
|
VbNvGet(vnc, VBNV_TEST_ERROR_FUNC, &test_err);
|
|
if (VBNV_TEST_ERROR_LOAD_KERNEL == test_err) {
|
|
/* Get error code */
|
|
VbNvGet(vnc, VBNV_TEST_ERROR_NUM, &test_err);
|
|
if (shcall)
|
|
shcall->test_error_num = (uint8_t)test_err;
|
|
/* Clear test params so we don't repeat the error */
|
|
VbNvSet(vnc, VBNV_TEST_ERROR_FUNC, 0);
|
|
VbNvSet(vnc, VBNV_TEST_ERROR_NUM, 0);
|
|
/* Handle error codes */
|
|
switch (test_err) {
|
|
case LOAD_KERNEL_RECOVERY:
|
|
recovery = VBNV_RECOVERY_RW_TEST_LK;
|
|
goto LoadKernelExit;
|
|
case LOAD_KERNEL_NOT_FOUND:
|
|
case LOAD_KERNEL_INVALID:
|
|
case LOAD_KERNEL_REBOOT:
|
|
retval = test_err;
|
|
goto LoadKernelExit;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Initialization */
|
|
blba = params->bytes_per_lba;
|
|
kbuf_sectors = KBUF_SIZE / blba;
|
|
if (0 == kbuf_sectors) {
|
|
VBDEBUG(("LoadKernel() called with sector size > KBUF_SIZE\n"));
|
|
goto LoadKernelExit;
|
|
}
|
|
|
|
if (kBootDev == boot_mode && !dev_switch) {
|
|
/* Dev firmware should be signed such that it never boots with the dev
|
|
* switch is off; so something is terribly wrong. */
|
|
VBDEBUG(("LoadKernel() called with dev firmware but dev switch off\n"));
|
|
if (shcall)
|
|
shcall->check_result = VBSD_LKC_CHECK_DEV_SWITCH_MISMATCH;
|
|
recovery = VBNV_RECOVERY_RW_DEV_MISMATCH;
|
|
goto LoadKernelExit;
|
|
}
|
|
|
|
if (kBootRecovery == boot_mode) {
|
|
/* Use the recovery key to verify the kernel */
|
|
kernel_subkey = (VbPublicKey*)((uint8_t*)gbb + gbb->recovery_key_offset);
|
|
|
|
/* Let the TPM know if we're in recovery mode */
|
|
if (0 != RollbackKernelRecovery(dev_switch)) {
|
|
VBDEBUG(("Error setting up TPM for recovery kernel\n"));
|
|
if (shcall)
|
|
shcall->flags |= VBSD_LK_FLAG_REC_TPM_INIT_ERROR;
|
|
/* Ignore return code, since we need to boot recovery mode to
|
|
* fix the TPM. */
|
|
}
|
|
|
|
/* Read the key indices from the TPM; ignore any errors */
|
|
if (shared) {
|
|
RollbackFirmwareRead(&shared->fw_version_tpm);
|
|
RollbackKernelRead(&shared->kernel_version_tpm);
|
|
}
|
|
} else {
|
|
/* Use the kernel subkey passed from LoadFirmware(). */
|
|
kernel_subkey = &shared->kernel_subkey;
|
|
|
|
/* Read current kernel key index from TPM. Assumes TPM is already
|
|
* initialized. */
|
|
status = RollbackKernelRead(&tpm_version);
|
|
if (0 != status) {
|
|
VBDEBUG(("Unable to get kernel versions from TPM\n"));
|
|
if (status == TPM_E_MUST_REBOOT)
|
|
retval = LOAD_KERNEL_REBOOT;
|
|
else
|
|
recovery = VBNV_RECOVERY_RW_TPM_ERROR;
|
|
goto LoadKernelExit;
|
|
}
|
|
if (shared)
|
|
shared->kernel_version_tpm = tpm_version;
|
|
}
|
|
|
|
do {
|
|
/* Read GPT data */
|
|
gpt.sector_bytes = (uint32_t)blba;
|
|
gpt.drive_sectors = params->ending_lba + 1;
|
|
if (0 != AllocAndReadGptData(&gpt)) {
|
|
VBDEBUG(("Unable to read GPT data\n"));
|
|
if (shcall)
|
|
shcall->check_result = VBSD_LKC_CHECK_GPT_READ_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* Initialize GPT library */
|
|
if (GPT_SUCCESS != GptInit(&gpt)) {
|
|
VBDEBUG(("Error parsing GPT\n"));
|
|
if (shcall)
|
|
shcall->check_result = VBSD_LKC_CHECK_GPT_PARSE_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* Allocate kernel header buffers */
|
|
kbuf = (uint8_t*)VbExMalloc(KBUF_SIZE);
|
|
if (!kbuf)
|
|
break;
|
|
|
|
/* Loop over candidate kernel partitions */
|
|
while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) {
|
|
VbSharedDataKernelPart* shpart = NULL;
|
|
VbKeyBlockHeader* key_block;
|
|
VbKernelPreambleHeader* preamble;
|
|
RSAPublicKey* data_key = NULL;
|
|
uint64_t key_version;
|
|
uint64_t combined_version;
|
|
uint64_t body_offset;
|
|
uint64_t body_offset_sectors;
|
|
uint64_t body_sectors;
|
|
int key_block_valid = 1;
|
|
|
|
VBDEBUG(("Found kernel entry at %" PRIu64 " size %" PRIu64 "\n",
|
|
part_start, part_size));
|
|
|
|
if (shcall) {
|
|
/* Set up tracking for this partition. This wraps around if called
|
|
* many times, so initialize the partition entry each time. */
|
|
shpart = shcall->parts + (shcall->kernel_parts_found
|
|
& (VBSD_MAX_KERNEL_PARTS - 1));
|
|
Memset(shpart, 0, sizeof(VbSharedDataKernelPart));
|
|
shpart->sector_start = part_start;
|
|
shpart->sector_count = part_size;
|
|
/* TODO: GPT partitions start at 1, but cgptlib starts them at 0.
|
|
* Adjust here, until cgptlib is fixed. */
|
|
shpart->gpt_index = (uint8_t)(gpt.current_kernel + 1);
|
|
shcall->kernel_parts_found++;
|
|
}
|
|
|
|
/* Found at least one kernel partition. */
|
|
found_partitions++;
|
|
|
|
/* Read the first part of the kernel partition. */
|
|
if (part_size < kbuf_sectors) {
|
|
VBDEBUG(("Partition too small to hold kernel.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_TOO_SMALL;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
if (0 != BootDeviceReadLBA(part_start, kbuf_sectors, kbuf)) {
|
|
VBDEBUG(("Unable to read start of partition.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_READ_START;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify the key block. */
|
|
key_block = (VbKeyBlockHeader*)kbuf;
|
|
if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 0)) {
|
|
VBDEBUG(("Verifying key block signature failed.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_SIG;
|
|
|
|
key_block_valid = 0;
|
|
|
|
/* If we're not in developer mode, this kernel is bad. */
|
|
if (kBootDev != boot_mode)
|
|
goto bad_kernel;
|
|
|
|
/* In developer mode, we can continue if the SHA-512 hash of the key
|
|
* block is valid. */
|
|
if (0 != KeyBlockVerify(key_block, KBUF_SIZE, kernel_subkey, 1)) {
|
|
VBDEBUG(("Verifying key block hash failed.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_BLOCK_HASH;
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
/* Check the key block flags against the current boot mode. */
|
|
if (!(key_block->key_block_flags &
|
|
(dev_switch ? KEY_BLOCK_FLAG_DEVELOPER_1 :
|
|
KEY_BLOCK_FLAG_DEVELOPER_0))) {
|
|
VBDEBUG(("Key block developer flag mismatch.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_DEV_MISMATCH;
|
|
key_block_valid = 0;
|
|
}
|
|
if (!(key_block->key_block_flags &
|
|
(rec_switch ? KEY_BLOCK_FLAG_RECOVERY_1 :
|
|
KEY_BLOCK_FLAG_RECOVERY_0))) {
|
|
VBDEBUG(("Key block recovery flag mismatch.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_REC_MISMATCH;
|
|
key_block_valid = 0;
|
|
}
|
|
|
|
/* Check for rollback of key version except in recovery mode. */
|
|
key_version = key_block->data_key.key_version;
|
|
if (kBootRecovery != boot_mode) {
|
|
if (key_version < (tpm_version >> 16)) {
|
|
VBDEBUG(("Key version too old.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_KEY_ROLLBACK;
|
|
key_block_valid = 0;
|
|
}
|
|
}
|
|
|
|
/* If we're not in developer mode, require the key block to be valid. */
|
|
if (kBootDev != boot_mode && !key_block_valid) {
|
|
VBDEBUG(("Key block is invalid.\n"));
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Get the key for preamble/data verification from the key block. */
|
|
data_key = PublicKeyToRSA(&key_block->data_key);
|
|
if (!data_key) {
|
|
VBDEBUG(("Data key bad.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_DATA_KEY_PARSE;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify the preamble, which follows the key block */
|
|
preamble = (VbKernelPreambleHeader*)(kbuf + key_block->key_block_size);
|
|
if ((0 != VerifyKernelPreamble(preamble,
|
|
KBUF_SIZE - key_block->key_block_size,
|
|
data_key))) {
|
|
VBDEBUG(("Preamble verification failed.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_VERIFY_PREAMBLE;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* If the key block is valid and we're not in recovery mode, check for
|
|
* rollback of the kernel version. */
|
|
combined_version = ((key_version << 16) |
|
|
(preamble->kernel_version & 0xFFFF));
|
|
if (shpart)
|
|
shpart->combined_version = (uint32_t)combined_version;
|
|
if (key_block_valid && kBootRecovery != boot_mode) {
|
|
if (combined_version < tpm_version) {
|
|
VBDEBUG(("Kernel version too low.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_KERNEL_ROLLBACK;
|
|
/* If we're not in developer mode, kernel version must be valid. */
|
|
if (kBootDev != boot_mode)
|
|
goto bad_kernel;
|
|
}
|
|
}
|
|
|
|
VBDEBUG(("Kernel preamble is good.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_PREAMBLE_VALID;
|
|
|
|
/* Check for lowest version from a valid header. */
|
|
if (key_block_valid && lowest_version > combined_version)
|
|
lowest_version = combined_version;
|
|
else {
|
|
VBDEBUG(("Key block valid: %d\n", key_block_valid));
|
|
VBDEBUG(("Combined version: %" PRIu64 "\n", combined_version));
|
|
}
|
|
|
|
/* If we already have a good kernel, no need to read another
|
|
* one; we only needed to look at the versions to check for
|
|
* rollback. So skip to the next kernel preamble. */
|
|
if (-1 != good_partition)
|
|
continue;
|
|
|
|
/* Verify body load address matches what we expect */
|
|
if ((preamble->body_load_address != (size_t)params->kernel_buffer) &&
|
|
!(params->boot_flags & BOOT_FLAG_SKIP_ADDR_CHECK)) {
|
|
VBDEBUG(("Wrong body load address.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_ADDRESS;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify kernel body starts at a multiple of the sector size. */
|
|
body_offset = key_block->key_block_size + preamble->preamble_size;
|
|
if (0 != body_offset % blba) {
|
|
VBDEBUG(("Kernel body not at multiple of sector size.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_OFFSET;
|
|
goto bad_kernel;
|
|
}
|
|
body_offset_sectors = body_offset / blba;
|
|
|
|
/* Verify kernel body fits in the buffer */
|
|
body_sectors = (preamble->body_signature.data_size + blba - 1) / blba;
|
|
if (body_sectors * blba > params->kernel_buffer_size) {
|
|
VBDEBUG(("Kernel body doesn't fit in memory.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_MEM;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Verify kernel body fits in the partition */
|
|
if (body_offset_sectors + body_sectors > part_size) {
|
|
VBDEBUG(("Kernel body doesn't fit in partition.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_BODY_EXCEEDS_PART;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Read the kernel data */
|
|
VBPERFSTART("VB_RKD");
|
|
if (0 != BootDeviceReadLBA(part_start + body_offset_sectors,
|
|
body_sectors,
|
|
params->kernel_buffer)) {
|
|
VBDEBUG(("Unable to read kernel data.\n"));
|
|
VBPERFEND("VB_RKD");
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_READ_DATA;
|
|
goto bad_kernel;
|
|
}
|
|
VBPERFEND("VB_RKD");
|
|
|
|
/* Verify kernel data */
|
|
if (0 != VerifyData((const uint8_t*)params->kernel_buffer,
|
|
params->kernel_buffer_size,
|
|
&preamble->body_signature, data_key)) {
|
|
VBDEBUG(("Kernel data verification failed.\n"));
|
|
if (shpart)
|
|
shpart->check_result = VBSD_LKP_CHECK_VERIFY_DATA;
|
|
goto bad_kernel;
|
|
}
|
|
|
|
/* Done with the kernel signing key, so can free it now */
|
|
RSAPublicKeyFree(data_key);
|
|
data_key = NULL;
|
|
|
|
/* If we're still here, the kernel is valid. */
|
|
/* Save the first good partition we find; that's the one we'll boot */
|
|
VBDEBUG(("Partition is good.\n"));
|
|
if (shpart) {
|
|
shpart->check_result = VBSD_LKP_CHECK_KERNEL_GOOD;
|
|
if (key_block_valid)
|
|
shpart->flags |= VBSD_LKP_FLAG_KEY_BLOCK_VALID;
|
|
}
|
|
|
|
good_partition_key_block_valid = key_block_valid;
|
|
/* TODO: GPT partitions start at 1, but cgptlib starts them at 0.
|
|
* Adjust here, until cgptlib is fixed. */
|
|
good_partition = gpt.current_kernel + 1;
|
|
params->partition_number = gpt.current_kernel + 1;
|
|
GetCurrentKernelUniqueGuid(&gpt, ¶ms->partition_guid);
|
|
/* TODO: GetCurrentKernelUniqueGuid() should take a destination size, or
|
|
* the dest should be a struct, so we know it's big enough. */
|
|
params->bootloader_address = preamble->bootloader_address;
|
|
params->bootloader_size = preamble->bootloader_size;
|
|
|
|
/* Update GPT to note this is the kernel we're trying */
|
|
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_TRY);
|
|
|
|
/* If we're in recovery mode or we're about to boot a dev-signed kernel,
|
|
* there's no rollback protection, so we can stop at the first valid
|
|
* kernel. */
|
|
if (kBootRecovery == boot_mode || !key_block_valid) {
|
|
VBDEBUG(("In recovery mode or dev-signed kernel\n"));
|
|
break;
|
|
}
|
|
|
|
/* Otherwise, we do care about the key index in the TPM. If the good
|
|
* partition's key version is the same as the tpm, then the TPM doesn't
|
|
* need updating; we can stop now. Otherwise, we'll check all the other
|
|
* headers to see if they contain a newer key. */
|
|
if (combined_version == tpm_version) {
|
|
VBDEBUG(("Same kernel version\n"));
|
|
break;
|
|
}
|
|
|
|
/* Continue, so that we skip the error handling code below */
|
|
continue;
|
|
|
|
bad_kernel:
|
|
/* Handle errors parsing this kernel */
|
|
if (NULL != data_key)
|
|
RSAPublicKeyFree(data_key);
|
|
|
|
VBDEBUG(("Marking kernel as invalid.\n"));
|
|
GptUpdateKernelEntry(&gpt, GPT_UPDATE_ENTRY_BAD);
|
|
|
|
|
|
} /* while(GptNextKernelEntry) */
|
|
} while(0);
|
|
|
|
/* Free kernel buffer */
|
|
if (kbuf)
|
|
VbExFree(kbuf);
|
|
|
|
/* Write and free GPT data */
|
|
WriteAndFreeGptData(&gpt);
|
|
|
|
/* Handle finding a good partition */
|
|
if (good_partition >= 0) {
|
|
VBDEBUG(("Good_partition >= 0\n"));
|
|
if (shcall)
|
|
shcall->check_result = VBSD_LKC_CHECK_GOOD_PARTITION;
|
|
|
|
/* See if we need to update the TPM */
|
|
if ((kBootNormal == boot_mode) &&
|
|
!((1 == shared->firmware_index) && (shared->flags & VBSD_FWB_TRIED))) {
|
|
/* We only update the TPM in normal mode. We don't advance the
|
|
* TPM if we're trying a new firmware B, because that firmware
|
|
* may have a key change and roll forward the TPM too soon. */
|
|
VBDEBUG(("Checking if TPM kernel version needs advancing\n"));
|
|
|
|
if ((lowest_version > tpm_version) &&
|
|
(lowest_version != LOWEST_TPM_VERSION)) {
|
|
status = RollbackKernelWrite((uint32_t)lowest_version);
|
|
if (0 != status) {
|
|
VBDEBUG(("Error writing kernel versions to TPM.\n"));
|
|
if (status == TPM_E_MUST_REBOOT)
|
|
retval = LOAD_KERNEL_REBOOT;
|
|
else
|
|
recovery = VBNV_RECOVERY_RW_TPM_ERROR;
|
|
goto LoadKernelExit;
|
|
}
|
|
if (shared)
|
|
shared->kernel_version_tpm = (uint32_t)lowest_version;
|
|
}
|
|
}
|
|
|
|
/* Lock the kernel versions */
|
|
status = RollbackKernelLock();
|
|
if (0 != status) {
|
|
VBDEBUG(("Error locking kernel versions.\n"));
|
|
/* Don't reboot to recovery mode if we're already there */
|
|
if (kBootRecovery != boot_mode) {
|
|
if (status == TPM_E_MUST_REBOOT)
|
|
retval = LOAD_KERNEL_REBOOT;
|
|
else
|
|
recovery = VBNV_RECOVERY_RW_TPM_ERROR;
|
|
goto LoadKernelExit;
|
|
}
|
|
}
|
|
|
|
/* Success! */
|
|
retval = LOAD_KERNEL_SUCCESS;
|
|
} else {
|
|
if (shcall)
|
|
shcall->check_result = (found_partitions > 0
|
|
? VBSD_LKC_CHECK_INVALID_PARTITIONS
|
|
: VBSD_LKC_CHECK_NO_PARTITIONS);
|
|
|
|
/* TODO: differentiate between finding an invalid kernel
|
|
* (found_partitions>0) and not finding one at all. Right now we
|
|
* treat them the same, and return LOAD_KERNEL_INVALID for both. */
|
|
retval = LOAD_KERNEL_INVALID;
|
|
}
|
|
|
|
LoadKernelExit:
|
|
|
|
/* Store recovery request, if any, then tear down non-volatile storage */
|
|
VbNvSet(vnc, VBNV_RECOVERY_REQUEST, LOAD_KERNEL_RECOVERY == retval ?
|
|
recovery : VBNV_RECOVERY_NOT_REQUESTED);
|
|
VbNvTeardown(vnc);
|
|
|
|
if (shared) {
|
|
if (shcall)
|
|
shcall->return_code = (uint8_t)retval;
|
|
|
|
/* Save whether the good partition's key block was fully verified */
|
|
if (good_partition_key_block_valid)
|
|
shared->flags |= VBSD_KERNEL_KEY_VERIFIED;
|
|
|
|
/* Save timer values */
|
|
shared->timer_load_kernel_enter = timer_enter;
|
|
shared->timer_load_kernel_exit = VbExGetTimer();
|
|
/* Store how much shared data we used, if any */
|
|
params->shared_data_size = shared->data_used;
|
|
}
|
|
|
|
return retval;
|
|
}
|