Files
OpenCellular/core/cortex-m0/task.c
Vic Yang ffac23c0ea Add cprints() and ccprints()
Our code base contains a lot of debug messages in this pattern:
  CPRINTF("[%T xxx]\n") or ccprintf("[%T xxx]\n")
The strings are taking up spaces in the EC binaries, so let's refactor
this by adding cprints() and ccprints().

cprints() is just like cprintf(), except that it adds the brackets
and the timestamp. ccprints() is equivalent to cprints(CC_CONSOLE, ...)

This saves us hundreds of bytes in EC binaries.

BUG=chromium:374575
TEST=Build and check flash size
BRANCH=None

Change-Id: Ifafe8dc1b80e698b28ed42b70518c7917b49ee51
Signed-off-by: Vic Yang <victoryang@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/200490
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2014-05-21 20:32:17 +00:00

646 lines
15 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Task scheduling / events module for Chrome EC operating system */
#include "atomic.h"
#include "common.h"
#include "console.h"
#include "cpu.h"
#include "link_defs.h"
#include "task.h"
#include "timer.h"
#include "uart.h"
#include "util.h"
typedef union {
struct {
/*
* Note that sp must be the first element in the task struct
* for __switchto() to work.
*/
uint32_t sp; /* Saved stack pointer for context switch */
uint32_t events; /* Bitmaps of received events */
uint64_t runtime; /* Time spent in task */
uint32_t *stack; /* Start of stack */
};
} task_;
/* Value to store in unused stack */
#define STACK_UNUSED_VALUE 0xdeadd00d
/* declare task routine prototypes */
#define TASK(n, r, d, s) int r(void *);
void __idle(void);
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
#undef TASK
/* Task names for easier debugging */
#define TASK(n, r, d, s) #n,
static const char * const task_names[] = {
"<< idle >>",
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
};
#undef TASK
#ifdef CONFIG_TASK_PROFILING
static uint64_t task_start_time; /* Time task scheduling started */
static uint64_t exc_start_time; /* Time of task->exception transition */
static uint64_t exc_end_time; /* Time of exception->task transition */
static uint64_t exc_total_time; /* Total time in exceptions */
static uint32_t svc_calls; /* Number of service calls */
static uint32_t task_switches; /* Number of times active task changed */
static uint32_t irq_dist[CONFIG_IRQ_COUNT]; /* Distribution of IRQ calls */
#endif
extern void __switchto(task_ *from, task_ *to);
extern int __task_start(int *task_stack_ready);
#ifndef CONFIG_LOW_POWER_IDLE
/* Idle task. Executed when no tasks are ready to be scheduled. */
void __idle(void)
{
while (1) {
/*
* Wait for the next irq event. This stops the CPU clock
* (sleep / deep sleep, depending on chip config).
*/
asm("wfi");
}
}
#endif /* !CONFIG_LOW_POWER_IDLE */
static void task_exit_trap(void)
{
int i = task_get_current();
cprints(CC_TASK, "Task %d (%s) exited!", i, task_names[i]);
/* Exited tasks simply sleep forever */
while (1)
task_wait_event(-1);
}
/* Startup parameters for all tasks. */
#define TASK(n, r, d, s) { \
.r0 = (uint32_t)d, \
.pc = (uint32_t)r, \
.stack_size = s, \
},
static const struct {
uint32_t r0;
uint32_t pc;
uint16_t stack_size;
} const tasks_init[] = {
TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE)
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
};
#undef TASK
/* Contexts for all tasks */
static task_ tasks[TASK_ID_COUNT];
/* Sanity checks about static task invariants */
BUILD_ASSERT(TASK_ID_COUNT <= sizeof(unsigned) * 8);
BUILD_ASSERT(TASK_ID_COUNT < (1 << (sizeof(task_id_t) * 8)));
/* Stacks for all tasks */
#define TASK(n, r, d, s) + s
uint8_t task_stacks[0
TASK(IDLE, __idle, 0, IDLE_TASK_STACK_SIZE)
CONFIG_TASK_LIST
CONFIG_TEST_TASK_LIST
] __aligned(8);
#undef TASK
/* Reserve space to discard context on first context switch. */
uint32_t scratchpad[17];
static task_ *current_task = (task_ *)scratchpad;
/*
* Should IRQs chain to svc_handler()? This should be set if either of the
* following is true:
*
* 1) Task scheduling has started, and task profiling is enabled. Task
* profiling does its tracking in svc_handler().
*
* 2) An event was set by an interrupt; this could result in a higher-priority
* task unblocking. After checking for a task switch, svc_handler() will clear
* the flag (unless profiling is also enabled; then the flag remains set).
*/
int need_resched_or_profiling;
/*
* Bitmap of all tasks ready to be run.
*
* Currently all tasks are enabled at startup.
*/
static uint32_t tasks_ready = (1<<TASK_ID_COUNT) - 1;
static int start_called; /* Has task swapping started */
static inline task_ *__task_id_to_ptr(task_id_t id)
{
return tasks + id;
}
void interrupt_disable(void)
{
asm("cpsid i");
}
void interrupt_enable(void)
{
asm("cpsie i");
}
inline int in_interrupt_context(void)
{
int ret;
asm("mrs %0, ipsr\n" /* read exception number */
"lsl %0, #23\n" : "=r"(ret)); /* exception bits are the 9 LSB */
return ret;
}
inline int get_interrupt_context(void)
{
int ret;
asm("mrs %0, ipsr\n" : "=r"(ret)); /* read exception number */
return ret & 0x1ff; /* exception bits are the 9 LSB */
}
task_id_t task_get_current(void)
{
return current_task - tasks;
}
uint32_t *task_get_event_bitmap(task_id_t tskid)
{
task_ *tsk = __task_id_to_ptr(tskid);
return &tsk->events;
}
int task_start_called(void)
{
return start_called;
}
/**
* Scheduling system call
*/
task_ *__svc_handler(int desched, task_id_t resched)
{
task_ *current, *next;
#ifdef CONFIG_TASK_PROFILING
int exc = get_interrupt_context();
uint64_t t;
#endif
/* Priority is already at 0 we cannot be interrupted */
#ifdef CONFIG_TASK_PROFILING
/*
* SVCall isn't triggered via DECLARE_IRQ(), so it needs to track its
* start time explicitly.
*/
if (exc == 0xb) {
exc_start_time = get_time().val;
svc_calls++;
}
#endif
current = current_task;
#ifdef CONFIG_DEBUG_STACK_OVERFLOW
if (*current->stack != STACK_UNUSED_VALUE) {
panic_printf("\n\nStack overflow in %s task!\n",
task_names[current - tasks]);
panic_reboot();
}
#endif
if (desched && !current->events) {
/*
* Remove our own ready bit (current - tasks is same as
* task_get_current())
*/
tasks_ready &= ~(1 << (current - tasks));
}
tasks_ready |= 1 << resched;
ASSERT(tasks_ready);
next = __task_id_to_ptr(31 - __builtin_clz(tasks_ready));
#ifdef CONFIG_TASK_PROFILING
/* Track time in interrupts */
t = get_time().val;
exc_total_time += (t - exc_start_time);
/*
* Bill the current task for time between the end of the last interrupt
* and the start of this one.
*/
current->runtime += (exc_start_time - exc_end_time);
exc_end_time = t;
#else
/*
* Don't chain here from interrupts until the next time an interrupt
* sets an event.
*/
need_resched_or_profiling = 0;
#endif
/* Switch to new task */
#ifdef CONFIG_TASK_PROFILING
if (next != current)
task_switches++;
#endif
current_task = next;
return current;
}
void svc_handler(int desched, task_id_t resched)
{
/*
* The layout of the this routine (and the __svc_handler companion one)
* ensures that we are getting the right tail call optimization from
* the compiler.
*/
task_ *prev = __svc_handler(desched, resched);
if (current_task != prev)
__switchto(prev, current_task);
}
void __schedule(int desched, int resched)
{
register int p0 asm("r0") = desched;
register int p1 asm("r1") = resched;
asm("svc 0" : : "r"(p0), "r"(p1));
}
#ifdef CONFIG_TASK_PROFILING
void task_start_irq_handler(void *excep_return)
{
/*
* Get time before checking depth, in case this handler is
* pre-empted.
*/
uint64_t t = get_time().val;
int irq = get_interrupt_context() - 16;
/*
* Track IRQ distribution. No need for atomic add, because an IRQ
* can't pre-empt itself.
*/
if (irq < ARRAY_SIZE(irq_dist))
irq_dist[irq]++;
/*
* Continue iff a rescheduling event happened or profiling is active,
* and we are not called from another exception (this must match the
* logic for when we chain to svc_handler() below).
*/
if (!need_resched_or_profiling || (((uint32_t)excep_return & 0xf) == 1))
return;
exc_start_time = t;
}
#endif
static uint32_t __wait_evt(int timeout_us, task_id_t resched)
{
task_ *tsk = current_task;
task_id_t me = tsk - tasks;
uint32_t evt;
int ret __attribute__((unused));
ASSERT(!in_interrupt_context());
if (timeout_us > 0) {
timestamp_t deadline = get_time();
deadline.val += timeout_us;
ret = timer_arm(deadline, me);
ASSERT(ret == EC_SUCCESS);
}
while (!(evt = atomic_read_clear(&tsk->events))) {
/*
* We need to ensure that the execution priority is actually
* decreased after the "cpsie i" in the atomic operation above
* else the "svc" in the __schedule call below will trigger
* a HardFault. Use a barrier to force it at that point.
*/
asm volatile("isb");
/* Remove ourself and get the next task in the scheduler */
__schedule(1, resched);
resched = TASK_ID_IDLE;
}
if (timeout_us > 0)
timer_cancel(me);
return evt;
}
uint32_t task_set_event(task_id_t tskid, uint32_t event, int wait)
{
task_ *receiver = __task_id_to_ptr(tskid);
ASSERT(receiver);
/* Set the event bit in the receiver message bitmap */
atomic_or(&receiver->events, event);
/* Re-schedule if priorities have changed */
if (in_interrupt_context()) {
/* The receiver might run again */
atomic_or(&tasks_ready, 1 << tskid);
#ifndef CONFIG_TASK_PROFILING
need_resched_or_profiling = 1;
#endif
} else {
if (wait) {
return __wait_evt(-1, tskid);
} else {
/*
* We need to ensure that the execution priority is
* actually decreased after the "cpsie i" in the atomic
* operation above else the "svc" in the __schedule
* call below will trigger a HardFault.
* Use a barrier to force it at that point.
*/
asm volatile("isb");
__schedule(0, tskid);
}
}
return 0;
}
uint32_t task_wait_event(int timeout_us)
{
return __wait_evt(timeout_us, TASK_ID_IDLE);
}
void task_enable_irq(int irq)
{
CPU_NVIC_EN(0) = 1 << irq;
}
void task_disable_irq(int irq)
{
CPU_NVIC_DIS(0) = 1 << irq;
}
void task_clear_pending_irq(int irq)
{
CPU_NVIC_UNPEND(0) = 1 << irq;
}
void task_trigger_irq(int irq)
{
CPU_NVIC_ISPR(0) = 1 << irq;
}
/*
* Initialize IRQs in the NVIC and set their priorities as defined by the
* DECLARE_IRQ statements.
*/
static void __nvic_init_irqs(void)
{
/* Get the IRQ priorities section from the linker */
int exc_calls = __irqprio_end - __irqprio;
int i;
/* Mask and clear all pending interrupts */
CPU_NVIC_DIS(0) = 0xffffffff;
CPU_NVIC_UNPEND(0) = 0xffffffff;
/*
* Re-enable global interrupts in case they're disabled. On a reboot,
* they're already enabled; if we've jumped here from another image,
* they're not.
*/
interrupt_enable();
/* Set priorities */
for (i = 0; i < exc_calls; i++) {
uint8_t irq = __irqprio[i].irq;
uint8_t prio = __irqprio[i].priority;
uint32_t prio_shift = irq % 4 * 8 + 6;
CPU_NVIC_PRI(irq / 4) =
(CPU_NVIC_PRI(irq / 4) &
~(0x7 << prio_shift)) |
(prio << prio_shift);
}
}
void mutex_lock(struct mutex *mtx)
{
uint32_t id = 1 << task_get_current();
ASSERT(id != TASK_ID_INVALID);
atomic_or(&mtx->waiters, id);
while (1) {
/* Try to get the lock (set 2 into the lock field) */
__asm__ __volatile__("cpsid i");
if (mtx->lock == 0)
break;
__asm__ __volatile__("cpsie i");
task_wait_event(0); /* Contention on the mutex */
}
mtx->lock = 2;
__asm__ __volatile__("cpsie i");
atomic_clear(&mtx->waiters, id);
}
void mutex_unlock(struct mutex *mtx)
{
uint32_t waiters;
task_ *tsk = current_task;
__asm__ __volatile__(" ldr %0, [%2]\n"
" str %3, [%1]\n"
: "=&r" (waiters)
: "r" (&mtx->lock), "r" (&mtx->waiters), "r" (0)
: "cc");
while (waiters) {
task_id_t id = 31 - __builtin_clz(waiters);
/* Somebody is waiting on the mutex */
task_set_event(id, TASK_EVENT_MUTEX, 0);
waiters &= ~(1 << id);
}
/* Ensure no event is remaining from mutex wake-up */
atomic_clear(&tsk->events, TASK_EVENT_MUTEX);
}
void task_print_list(void)
{
int i;
ccputs("Task Ready Name Events Time (s) StkUsed\n");
for (i = 0; i < TASK_ID_COUNT; i++) {
char is_ready = (tasks_ready & (1<<i)) ? 'R' : ' ';
uint32_t *sp;
int stackused = tasks_init[i].stack_size;
for (sp = tasks[i].stack;
sp < (uint32_t *)tasks[i].sp && *sp == STACK_UNUSED_VALUE;
sp++)
stackused -= sizeof(uint32_t);
ccprintf("%4d %c %-16s %08x %11.6ld %3d/%3d\n", i, is_ready,
task_names[i], tasks[i].events, tasks[i].runtime,
stackused, tasks_init[i].stack_size);
cflush();
}
}
int command_task_info(int argc, char **argv)
{
#ifdef CONFIG_TASK_PROFILING
int total = 0;
int i;
#endif
task_print_list();
#ifdef CONFIG_TASK_PROFILING
ccputs("IRQ counts by type:\n");
cflush();
for (i = 0; i < ARRAY_SIZE(irq_dist); i++) {
if (irq_dist[i]) {
ccprintf("%4d %8d\n", i, irq_dist[i]);
total += irq_dist[i];
}
}
ccprintf("Service calls: %11d\n", svc_calls);
ccprintf("Total exceptions: %11d\n", total + svc_calls);
ccprintf("Task switches: %11d\n", task_switches);
ccprintf("Task switching started: %11.6ld s\n", task_start_time);
ccprintf("Time in tasks: %11.6ld s\n",
get_time().val - task_start_time);
ccprintf("Time in exceptions: %11.6ld s\n", exc_total_time);
#endif
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(taskinfo, command_task_info,
NULL,
"Print task info",
NULL);
static int command_task_ready(int argc, char **argv)
{
if (argc < 2) {
ccprintf("tasks_ready: 0x%08x\n", tasks_ready);
} else {
tasks_ready = strtoi(argv[1], NULL, 16);
ccprintf("Setting tasks_ready to 0x%08x\n", tasks_ready);
__schedule(0, 0);
}
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(taskready, command_task_ready,
"[setmask]",
"Print/set ready tasks",
NULL);
#ifdef CONFIG_CMD_STACKOVERFLOW
static void stack_overflow_recurse(int n)
{
ccprintf("+%d", n);
/*
* Force task context switch, since that's where we do stack overflow
* checking.
*/
msleep(10);
stack_overflow_recurse(n+1);
/*
* Do work after the recursion, or else the compiler uses tail-chaining
* and we don't actually consume additional stack.
*/
ccprintf("-%d", n);
}
static int command_stackoverflow(int argc, char **argv)
{
ccprintf("Recursing 0,");
stack_overflow_recurse(1);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(stackoverflow, command_stackoverflow,
NULL,
"Recurse until stack overflow",
NULL);
#endif /* CONFIG_CMD_STACKOVERFLOW */
void task_pre_init(void)
{
uint32_t *stack_next = (uint32_t *)task_stacks;
int i;
/* Fill the task memory with initial values */
for (i = 0; i < TASK_ID_COUNT; i++) {
uint32_t *sp;
/* Stack size in words */
uint32_t ssize = tasks_init[i].stack_size / 4;
tasks[i].stack = stack_next;
/*
* Update stack used by first frame: 8 words for the normal
* stack, plus 8 for R4-R11. With FP enabled, we need another
* 18 words for S0-S15 and FPCSR and to align to 64-bit.
*/
sp = stack_next + ssize - 16;
tasks[i].sp = (uint32_t)sp;
/* Initial context on stack (see __switchto()) */
sp[8] = tasks_init[i].r0; /* r0 */
sp[13] = (uint32_t)task_exit_trap; /* lr */
sp[14] = tasks_init[i].pc; /* pc */
sp[15] = 0x01000000; /* psr */
/* Fill unused stack; also used to detect stack overflow. */
for (sp = stack_next; sp < (uint32_t *)tasks[i].sp; sp++)
*sp = STACK_UNUSED_VALUE;
stack_next += ssize;
}
/*
* Fill in guard value in scratchpad to prevent stack overflow
* detection failure on the first context switch. This works because
* the first word in the scratchpad is where the switcher will store
* sp, so it's ok to blow away.
*/
((task_ *)scratchpad)->stack = (uint32_t *)scratchpad;
*(uint32_t *)scratchpad = STACK_UNUSED_VALUE;
/* Initialize IRQs */
__nvic_init_irqs();
}
int task_start(void)
{
#ifdef CONFIG_TASK_PROFILING
task_start_time = exc_end_time = get_time().val;
#endif
start_called = 1;
return __task_start(&need_resched_or_profiling);
}