Files
OpenCellular/board/ryu/board.c
Shawn Nematbakhsh 89b8ff1cba cleanup: motion_sense: Remove driver data structure externs
Driver data structs are now accessed through the drv_data pointer.

BUG=chromium:733352
BRANCH=None
TEST=`make buildall -j`

Signed-off-by: Shawn Nematbakhsh <shawnn@chromium.org>
Change-Id: I8fedb425708a08ae6900ade6f17967fe2bc75ebf
Reviewed-on: https://chromium-review.googlesource.com/537217
Commit-Ready: Shawn N <shawnn@chromium.org>
Tested-by: Shawn N <shawnn@chromium.org>
Reviewed-by: Aseda Aboagye <aaboagye@chromium.org>
2017-06-15 23:54:00 -07:00

788 lines
20 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* ryu board configuration */
#include "adc.h"
#include "adc_chip.h"
#include "atomic.h"
#include "battery.h"
#include "case_closed_debug.h"
#include "charge_manager.h"
#include "charge_ramp.h"
#include "charge_state.h"
#include "charger.h"
#include "common.h"
#include "console.h"
#include "driver/accelgyro_bmi160.h"
#include "driver/als_si114x.h"
#include "ec_version.h"
#include "gesture.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "inductive_charging.h"
#include "lid_switch.h"
#include "lightbar.h"
#include "motion_sense.h"
#include "power.h"
#include "power_button.h"
#include "queue_policies.h"
#include "registers.h"
#include "spi.h"
#include "system.h"
#include "task.h"
#include "usb_charge.h"
#include "usb_descriptor.h"
#include "usb_pd.h"
#include "usb_spi.h"
#include "usb-stm32f3.h"
#include "usb-stream.h"
#include "usart-stm32f3.h"
#include "usart_tx_dma.h"
#include "util.h"
#include "pi3usb9281.h"
#define CPRINTS(format, args...) cprints(CC_USBCHARGE, format, ## args)
/* VBUS too low threshold */
#define VBUS_LOW_THRESHOLD_MV 4600
/* Input current error margin */
#define IADP_ERROR_MARGIN_MA 100
static int charge_current_limit;
/*
* PD host event status for host command
* Note: this variable must be aligned on 4-byte boundary because we pass the
* address to atomic_ functions which use assembly to access them.
*/
static struct ec_response_host_event_status host_event_status __aligned(4);
void vbus_evt(enum gpio_signal signal)
{
usb_charger_vbus_change(0, gpio_get_level(signal));
task_wake(TASK_ID_PD_C0);
}
void usb_evt(enum gpio_signal signal)
{
task_set_event(TASK_ID_USB_CHG_P0, USB_CHG_EVENT_BC12, 0);
}
#include "gpio_list.h"
const void *const usb_strings[] = {
[USB_STR_DESC] = usb_string_desc,
[USB_STR_VENDOR] = USB_STRING_DESC("Google Inc."),
[USB_STR_PRODUCT] = USB_STRING_DESC("Ryu debug"),
[USB_STR_VERSION] = USB_STRING_DESC(CROS_EC_VERSION32),
[USB_STR_CONSOLE_NAME] = USB_STRING_DESC("EC_PD"),
[USB_STR_AP_STREAM_NAME] = USB_STRING_DESC("AP"),
};
BUILD_ASSERT(ARRAY_SIZE(usb_strings) == USB_STR_COUNT);
/*
* Define AP console forwarding queue and associated USART and USB
* stream endpoints.
*/
static struct usart_config const ap_usart;
struct usb_stream_config const ap_usb;
static struct queue const ap_usart_to_usb = QUEUE_DIRECT(64, uint8_t,
ap_usart.producer,
ap_usb.consumer);
static struct queue const ap_usb_to_usart = QUEUE_DIRECT(64, uint8_t,
ap_usb.producer,
ap_usart.consumer);
static struct usart_tx_dma const ap_usart_tx_dma =
USART_TX_DMA(STM32_DMAC_USART1_TX, 16);
static struct usart_config const ap_usart =
USART_CONFIG(usart1_hw,
usart_rx_interrupt,
ap_usart_tx_dma.usart_tx,
115200,
ap_usart_to_usb,
ap_usb_to_usart);
#define AP_USB_STREAM_RX_SIZE 16
#define AP_USB_STREAM_TX_SIZE 16
USB_STREAM_CONFIG(ap_usb,
USB_IFACE_AP_STREAM,
USB_STR_AP_STREAM_NAME,
USB_EP_AP_STREAM,
AP_USB_STREAM_RX_SIZE,
AP_USB_STREAM_TX_SIZE,
ap_usb_to_usart,
ap_usart_to_usb)
struct pi3usb9281_config pi3usb9281_chips[] = {
{
.i2c_port = I2C_PORT_PERICOM,
.mux_lock = NULL,
}
};
BUILD_ASSERT(ARRAY_SIZE(pi3usb9281_chips) ==
CONFIG_USB_SWITCH_PI3USB9281_CHIP_COUNT);
/* Initialize board. */
static void board_init(void)
{
int i;
/* Enable pericom BC1.2 interrupts. */
gpio_enable_interrupt(GPIO_USBC_BC12_INT_L);
/*
* Initialize AP console forwarding USART and queues.
*/
queue_init(&ap_usart_to_usb);
queue_init(&ap_usb_to_usart);
usart_init(&ap_usart);
/* Disable UART input when the Write Protect is enabled */
if (system_is_locked())
ap_usb.state->rx_disabled = 1;
/*
* Enable CC lines after all GPIO have been initialized. Note, it is
* important that this is enabled after the CC_DEVICE_ODL lines are
* set low to specify device mode.
*/
gpio_set_level(GPIO_USBC_CC_EN, 1);
/* Enable interrupts on VBUS transitions. */
gpio_enable_interrupt(GPIO_CHGR_ACOK);
/* Enable interrupts from BMI160 sensor. */
gpio_enable_interrupt(GPIO_ACC_IRQ1);
/* Enable interrupts from SI1141 sensor. */
gpio_enable_interrupt(GPIO_ALS_PROXY_INT_L);
if (board_has_spi_sensors()) {
for (i = MOTIONSENSE_TYPE_ACCEL;
i <= MOTIONSENSE_TYPE_MAG; i++) {
motion_sensors[i].addr =
BMI160_SET_SPI_ADDRESS(CONFIG_SPI_ACCEL_PORT);
}
/* SPI sensors: put back the GPIO in its expected state */
gpio_set_level(GPIO_SPI3_NSS, 1);
/* Enable SPI for BMI160 */
gpio_config_module(MODULE_SPI_MASTER, 1);
/* Set all four SPI3 pins to high speed */
/* pins C10/C11/C12 */
STM32_GPIO_OSPEEDR(GPIO_C) |= 0x03f00000;
/* pin A4 */
STM32_GPIO_OSPEEDR(GPIO_A) |= 0x00000300;
/* Enable clocks to SPI3 module */
STM32_RCC_APB1ENR |= STM32_RCC_PB1_SPI3;
/* Reset SPI3 */
STM32_RCC_APB1RSTR |= STM32_RCC_PB1_SPI3;
STM32_RCC_APB1RSTR &= ~STM32_RCC_PB1_SPI3;
spi_enable(CONFIG_SPI_ACCEL_PORT, 1);
CPRINTS("Board using SPI sensors");
} else { /* I2C sensors on rev v6/7/8 */
CPRINTS("Board using I2C sensors");
/*
* On EVT2, when the sensors are on the same bus as other
* sensors, motion task would not leave enough time for
* processing as soon as its frequency is around ~200Hz.
*/
motion_min_interval = 8 * MSEC;
}
}
DECLARE_HOOK(HOOK_INIT, board_init, HOOK_PRIO_DEFAULT);
static void board_startup_key_combo(void)
{
int vold = !gpio_get_level(GPIO_BTN_VOLD_L);
int volu = !gpio_get_level(GPIO_BTN_VOLU_L);
int pwr = power_button_signal_asserted();
/*
* Determine recovery mode is requested by the power and
* voldown buttons being pressed (while device was off).
*/
if (pwr && vold && !volu) {
host_set_single_event(EC_HOST_EVENT_KEYBOARD_RECOVERY);
CPRINTS("> RECOVERY mode");
}
/*
* Determine fastboot mode is requested by the power and
* voldown buttons being pressed (while device was off).
*/
if (pwr && volu && !vold) {
host_set_single_event(EC_HOST_EVENT_KEYBOARD_FASTBOOT);
CPRINTS("> FASTBOOT mode");
}
}
DECLARE_HOOK(HOOK_CHIPSET_STARTUP, board_startup_key_combo, HOOK_PRIO_DEFAULT);
/* power signal list. Must match order of enum power_signal. */
const struct power_signal_info power_signal_list[] = {
{GPIO_AP_HOLD, 1, "AP_HOLD"},
{GPIO_AP_IN_SUSPEND, 1, "SUSPEND_ASSERTED"},
};
BUILD_ASSERT(ARRAY_SIZE(power_signal_list) == POWER_SIGNAL_COUNT);
/* ADC channels */
const struct adc_t adc_channels[] = {
/* Vbus sensing. Converted to mV, /10 voltage divider. */
[ADC_VBUS] = {"VBUS", 30000, 4096, 0, STM32_AIN(0)},
/* USB PD CC lines sensing. Converted to mV (3000mV/4096). */
[ADC_CC1_PD] = {"CC1_PD", 3000, 4096, 0, STM32_AIN(1)},
[ADC_CC2_PD] = {"CC2_PD", 3000, 4096, 0, STM32_AIN(3)},
};
BUILD_ASSERT(ARRAY_SIZE(adc_channels) == ADC_CH_COUNT);
/* I2C ports */
const struct i2c_port_t i2c_ports[] = {
{"master", I2C_PORT_MASTER, 100,
GPIO_MASTER_I2C_SCL, GPIO_MASTER_I2C_SDA},
{"slave", I2C_PORT_SLAVE, 1000,
GPIO_SLAVE_I2C_SCL, GPIO_SLAVE_I2C_SDA},
};
const unsigned int i2c_ports_used = ARRAY_SIZE(i2c_ports);
/* SPI devices */
const struct spi_device_t spi_devices[] = {
{ CONFIG_SPI_FLASH_PORT, 0, GPIO_SPI_FLASH_NSS},
{ CONFIG_SPI_ACCEL_PORT, 1, GPIO_SPI3_NSS }
};
const unsigned int spi_devices_used = ARRAY_SIZE(spi_devices);
/* Sensor mutex */
static struct mutex g_mutex;
static struct bmi160_drv_data_t g_bmi160_data;
static struct si114x_drv_data_t g_si114x_data = {
.state = SI114X_NOT_READY,
.covered = 0,
.type_data = {
/* Proximity */
{
.base_data_reg = SI114X_REG_PS1_DATA0,
.irq_flags = SI114X_PS_INT_FLAG,
.scale = 1,
.offset = -256,
},
/* light */
{
.base_data_reg = SI114X_REG_ALSVIS_DATA0,
.irq_flags = SI114X_ALS_INT_FLAG,
.scale = 1,
.offset = -256,
}
}
};
/* Matrix to rotate sensor vector into standard reference frame */
const matrix_3x3_t accelgyro_standard_ref = {
{FLOAT_TO_FP(-1), 0, 0},
{ 0, FLOAT_TO_FP(-1), 0},
{ 0, 0, FLOAT_TO_FP(1)}
};
const matrix_3x3_t mag_standard_ref = {
{ 0, FLOAT_TO_FP(1), 0},
{FLOAT_TO_FP(1), 0, 0},
{ 0, 0, FLOAT_TO_FP(-1)}
};
struct motion_sensor_t motion_sensors[] = {
/*
* Note: bmi160: supports accelerometer and gyro sensor
* Requirement: accelerometer sensor must init before gyro sensor
* DO NOT change the order of the following table.
*/
[RYU_LID_ACCEL] = {
.name = "Accel",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_ACCEL,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_ACCEL,
.addr = BMI160_ADDR0,
.rot_standard_ref = &accelgyro_standard_ref,
.default_range = 8, /* g, use hifi requirements */
.min_frequency = BMI160_ACCEL_MIN_FREQ,
.max_frequency = BMI160_ACCEL_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* Used for double tap */
[SENSOR_CONFIG_EC_S0] = {
.odr = TAP_ODR,
/* Interrupt driven, no polling */
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S3] = {
.odr = TAP_ODR,
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = TAP_ODR,
.ec_rate = 0,
},
},
},
[RYU_LID_GYRO] = {
.name = "Gyro",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_GYRO,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_ACCEL,
.addr = BMI160_ADDR0,
.default_range = 1000, /* dps, use hifi requirement */
.rot_standard_ref = &accelgyro_standard_ref,
.min_frequency = BMI160_GYRO_MIN_FREQ,
.max_frequency = BMI160_GYRO_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC does not need gyro in S0 */
[SENSOR_CONFIG_EC_S0] = {
.odr = 0,
.ec_rate = 0,
},
/* Unused */
[SENSOR_CONFIG_EC_S3] = {
.odr = 0,
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
[RYU_LID_MAG] = {
.name = "Mag",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_BMI160,
.type = MOTIONSENSE_TYPE_MAG,
.location = MOTIONSENSE_LOC_LID,
.drv = &bmi160_drv,
.mutex = &g_mutex,
.drv_data = &g_bmi160_data,
.port = I2C_PORT_ACCEL,
.addr = BMI160_ADDR0,
.rot_standard_ref = &mag_standard_ref,
.default_range = 1 << 11, /* 16LSB / uT, fixed */
.min_frequency = BMM150_MAG_MIN_FREQ,
.max_frequency = BMM150_MAG_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC does not need compass in S0 */
[SENSOR_CONFIG_EC_S0] = {
.odr = 0,
.ec_rate = 0,
},
/* Unused */
[SENSOR_CONFIG_EC_S3] = {
.odr = 0,
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
[RYU_LID_LIGHT] = {
.name = "Light",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_SI1141,
.type = MOTIONSENSE_TYPE_LIGHT,
.location = MOTIONSENSE_LOC_LID,
.drv = &si114x_drv,
.mutex = &g_mutex,
.drv_data = &g_si114x_data,
.addr = SI114X_ADDR,
.rot_standard_ref = NULL,
.default_range = 9000, /* 90%: int = 0 - frac = 9000/10000 */
.min_frequency = SI114X_LIGHT_MIN_FREQ,
.max_frequency = SI114X_LIGHT_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC needs sensor for light adaptive brightness */
[SENSOR_CONFIG_EC_S0] = {
.odr = 1000,
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S3] = {
.odr = 1000,
/* Interrupt driven, for double tap */
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = 1000,
.ec_rate = 0,
},
},
},
[RYU_LID_PROX] = {
.name = "Prox",
.active_mask = SENSOR_ACTIVE_S0_S3_S5,
.chip = MOTIONSENSE_CHIP_SI1141,
.type = MOTIONSENSE_TYPE_PROX,
.location = MOTIONSENSE_LOC_LID,
.drv = &si114x_drv,
.mutex = &g_mutex,
.drv_data = &g_si114x_data,
.port = I2C_PORT_ALS,
.addr = SI114X_ADDR,
.rot_standard_ref = NULL,
.default_range = 7630, /* Upon testing at desk */
.min_frequency = SI114X_PROX_MIN_FREQ,
.max_frequency = SI114X_PROX_MAX_FREQ,
.config = {
/* AP: by default shutdown all sensors */
[SENSOR_CONFIG_AP] = {
.odr = 0,
.ec_rate = 0,
},
/* EC does not need proximity in S0 */
[SENSOR_CONFIG_EC_S0] = {
.odr = 0,
.ec_rate = 0,
},
/* Unused */
[SENSOR_CONFIG_EC_S3] = {
.odr = 0,
.ec_rate = 0,
},
[SENSOR_CONFIG_EC_S5] = {
.odr = 0,
.ec_rate = 0,
},
},
},
};
const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
const struct lb_brightness_def lb_brightness_levels[] = {
{
/* regular brightness */
.lux_up = 60,
.lux_down = 40,
.color = {
{0x74, 0x58, 0xb4}, /* Segment0: Google blue */
{0xd6, 0x40, 0x20}, /* Segment1: Google red */
{0xfa, 0xe6, 0x20}, /* Segment2: Google yellow */
{0x66, 0xb0, 0x50}, /* Segment3: Google green */
},
},
{
/* 25 - 50% brightness */
.lux_up = 40,
.lux_down = 20,
.color = {
{0x51, 0x38, 0x7d},
{0x99, 0x28, 0x15},
{0xb8, 0x9e, 0x1a},
{0x44, 0x80, 0x35},
},
},
{
/* 0 .. 25% brightness */
.lux_up = 0,
.lux_down = 0,
.color = {
{0x3d, 0x28, 0x5c},
{0x71, 0x28, 0x10},
{0x8a, 0x6f, 0x10},
{0x2f, 0x60, 0x25},
},
},
};
const unsigned int lb_brightness_levels_count =
ARRAY_SIZE(lb_brightness_levels);
int extpower_is_present(void)
{
return gpio_get_level(GPIO_CHGR_ACOK);
}
void usb_board_connect(void)
{
gpio_set_level(GPIO_USB_PU_EN_L, 0);
}
void usb_board_disconnect(void)
{
gpio_set_level(GPIO_USB_PU_EN_L, 1);
}
/**
* Set active charge port -- only one port can be active at a time.
*
* @param charge_port Charge port to enable.
*
* Returns EC_SUCCESS if charge port is accepted and made active,
* EC_ERROR_* otherwise.
*/
int board_set_active_charge_port(int charge_port)
{
/* check if we are source vbus on that port */
int src = gpio_get_level(GPIO_CHGR_OTG);
if (charge_port >= 0 && charge_port < CONFIG_USB_PD_PORT_COUNT && src) {
CPRINTS("Port %d is not a sink, skipping enable", charge_port);
return EC_ERROR_INVAL;
}
/* Enable/disable charging */
gpio_set_level(GPIO_USBC_CHARGE_EN_L, charge_port == CHARGE_PORT_NONE);
return EC_SUCCESS;
}
/**
* Set the charge limit based upon desired maximum.
*
* @param port Port number.
* @param supplier Charge supplier type.
* @param charge_ma Desired charge limit (mA).
* @param charge_mv Negotiated charge voltage (mV).
*/
void board_set_charge_limit(int port, int supplier, int charge_ma,
int max_ma, int charge_mv)
{
int rv;
charge_current_limit = MAX(charge_ma, CONFIG_CHARGER_INPUT_CURRENT);
rv = charge_set_input_current_limit(charge_current_limit, charge_mv);
if (rv < 0)
CPRINTS("Failed to set input current limit for PD");
}
/**
* Return whether ramping is allowed for given supplier
*/
int board_is_ramp_allowed(int supplier)
{
return supplier == CHARGE_SUPPLIER_BC12_DCP ||
supplier == CHARGE_SUPPLIER_BC12_SDP ||
supplier == CHARGE_SUPPLIER_BC12_CDP ||
supplier == CHARGE_SUPPLIER_PROPRIETARY;
}
/**
* Return the maximum allowed input current
*/
int board_get_ramp_current_limit(int supplier, int sup_curr)
{
switch (supplier) {
case CHARGE_SUPPLIER_BC12_DCP:
return 2400;
case CHARGE_SUPPLIER_BC12_SDP:
return 1000;
case CHARGE_SUPPLIER_BC12_CDP:
return 2400;
case CHARGE_SUPPLIER_PROPRIETARY:
return sup_curr;
default:
return 500;
}
}
/* Send host event up to AP */
void pd_send_host_event(int mask)
{
/* mask must be set */
if (!mask)
return;
atomic_or(&(host_event_status.status), mask);
/* interrupt the AP */
host_set_single_event(EC_HOST_EVENT_PD_MCU);
}
/**
* Enable and disable SPI for case closed debugging. This forces the AP into
* reset while SPI is enabled, thus preventing contention on the SPI interface.
*/
void usb_spi_board_enable(struct usb_spi_config const *config)
{
/* Place AP into reset */
gpio_set_level(GPIO_PMIC_WARM_RESET_L, 0);
/* Configure SPI GPIOs */
gpio_config_module(MODULE_SPI_FLASH, 1);
gpio_set_flags(SPI_FLASH_DEVICE->gpio_cs, GPIO_OUT_HIGH);
/* Set all four SPI pins to high speed */
/* pins B10/B14/B15 and B9 */
STM32_GPIO_OSPEEDR(GPIO_B) |= 0xf03c0000;
/* Enable clocks to SPI2 module */
STM32_RCC_APB1ENR |= STM32_RCC_PB1_SPI2;
/* Reset SPI2 */
STM32_RCC_APB1RSTR |= STM32_RCC_PB1_SPI2;
STM32_RCC_APB1RSTR &= ~STM32_RCC_PB1_SPI2;
/* Enable SPI LDO to power the flash chip */
gpio_set_level(GPIO_VDDSPI_EN, 1);
spi_enable(CONFIG_SPI_FLASH_PORT, 1);
}
void usb_spi_board_disable(struct usb_spi_config const *config)
{
spi_enable(CONFIG_SPI_FLASH_PORT, 0);
/* Disable SPI LDO */
gpio_set_level(GPIO_VDDSPI_EN, 0);
/* Disable clocks to SPI2 module */
STM32_RCC_APB1ENR &= ~STM32_RCC_PB1_SPI2;
/* Release SPI GPIOs */
gpio_config_module(MODULE_SPI_FLASH, 0);
gpio_set_flags(SPI_FLASH_DEVICE->gpio_cs, GPIO_INPUT);
/* Release AP from reset */
gpio_set_level(GPIO_PMIC_WARM_RESET_L, 1);
}
int board_get_version(void)
{
static int ver;
if (!ver) {
/*
* read the board EC ID on the tristate strappings
* using ternary encoding: 0 = 0, 1 = 1, Hi-Z = 2
*/
uint8_t id0 = 0, id1 = 0;
gpio_set_flags(GPIO_BOARD_ID0, GPIO_PULL_DOWN | GPIO_INPUT);
gpio_set_flags(GPIO_BOARD_ID1, GPIO_PULL_DOWN | GPIO_INPUT);
usleep(100);
id0 = gpio_get_level(GPIO_BOARD_ID0);
id1 = gpio_get_level(GPIO_BOARD_ID1);
gpio_set_flags(GPIO_BOARD_ID0, GPIO_PULL_UP | GPIO_INPUT);
gpio_set_flags(GPIO_BOARD_ID1, GPIO_PULL_UP | GPIO_INPUT);
usleep(100);
id0 = gpio_get_level(GPIO_BOARD_ID0) && !id0 ? 2 : id0;
id1 = gpio_get_level(GPIO_BOARD_ID1) && !id1 ? 2 : id1;
gpio_set_flags(GPIO_BOARD_ID0, GPIO_INPUT);
gpio_set_flags(GPIO_BOARD_ID1, GPIO_INPUT);
ver = id1 * 3 + id0;
CPRINTS("Board ID = %d", ver);
}
return ver;
}
int board_has_spi_sensors(void)
{
/*
* boards version 6 / 7 / 8 have an I2C bus to sensors.
* board version 0+ has a SPI bus to sensors
*/
int ver = board_get_version();
return (ver < 6);
}
void sensor_board_proc_double_tap(void)
{
lightbar_sequence(LIGHTBAR_TAP);
}
/****************************************************************************/
/* Host commands */
static int host_event_status_host_cmd(struct host_cmd_handler_args *args)
{
struct ec_response_host_event_status *r = args->response;
/* Read and clear the host event status to return to AP */
r->status = atomic_read_clear(&(host_event_status.status));
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_PD_HOST_EVENT_STATUS, host_event_status_host_cmd,
EC_VER_MASK(0));
/****************************************************************************/
/* Console commands */
static int cmd_btn_press(int argc, char **argv)
{
enum gpio_signal gpio;
char *e;
int v;
if (argc < 2)
return EC_ERROR_PARAM_COUNT;
if (!strcasecmp(argv[1], "volup"))
gpio = GPIO_BTN_VOLU_L;
else if (!strcasecmp(argv[1], "voldown"))
gpio = GPIO_BTN_VOLD_L;
else
return EC_ERROR_PARAM1;
if (argc < 3) {
/* Just reading */
ccprintf("Button %s pressed = %d\n", argv[1],
!gpio_get_level(gpio));
return EC_SUCCESS;
}
v = strtoi(argv[2], &e, 0);
if (*e)
return EC_ERROR_PARAM2;
if (v)
gpio_set_flags(gpio, GPIO_OUT_LOW);
else
gpio_set_flags(gpio, GPIO_INPUT | GPIO_PULL_UP);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(btnpress, cmd_btn_press,
"<volup|voldown> [0|1]",
"Simulate button press");