mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-07 16:11:43 +00:00
This change adds battery operating temperature check. Host and EC will be turned off when overtemp. EC can be waked up by predefined external signals like key press or AC_PRESENT gpio. For safty reason, this change does not check battery temperature after EC deep sleep. Signed-off-by: Rong Chang <rongchang@chromium.org> BUG=chrome-os-partner:8451,9108 TEST=none Mock battery_temperature() fucntion to test. Change-Id: I3203515b3df86192f690f9b98901020209ce49b3
586 lines
15 KiB
C
586 lines
15 KiB
C
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Battery charging task and state machine.
|
|
*/
|
|
|
|
|
|
#include "battery.h"
|
|
#include "battery_pack.h"
|
|
#include "board.h"
|
|
#include "charge_state.h"
|
|
#include "charger.h"
|
|
#include "chipset.h"
|
|
#include "console.h"
|
|
#include "gpio.h"
|
|
#include "lpc.h"
|
|
#include "lpc_commands.h"
|
|
#include "power_led.h"
|
|
#include "smart_battery.h"
|
|
#include "system.h"
|
|
#include "timer.h"
|
|
#include "util.h"
|
|
#include "x86_power.h"
|
|
|
|
/* Console output macros */
|
|
#define CPUTS(outstr) cputs(CC_CHARGER, outstr)
|
|
#define CPRINTF(format, args...) cprintf(CC_CHARGER, format, ## args)
|
|
|
|
/* Stop charge when state of charge reaches this percentage */
|
|
#define STOP_CHARGE_THRESHOLD 100
|
|
|
|
static const char * const state_name[] = POWER_STATE_NAME_TABLE;
|
|
|
|
/* helper function(s) */
|
|
static inline int get_ac(void)
|
|
{
|
|
return gpio_get_level(GPIO_AC_PRESENT);
|
|
}
|
|
|
|
/* Battery information used to fill ACPI _BIF and/or _BIX */
|
|
static void update_battery_info(void)
|
|
{
|
|
char *batt_str;
|
|
int batt_serial;
|
|
|
|
/* Design Capacity of Full */
|
|
battery_design_capacity((int *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_DCAP));
|
|
|
|
/* Design Voltage */
|
|
battery_design_voltage((int *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_DVLT));
|
|
|
|
/* Last Full Charge Capacity */
|
|
battery_full_charge_capacity((int *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_LFCC));
|
|
|
|
/* Cycle Count */
|
|
battery_cycle_count((int *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_CCNT));
|
|
|
|
/* Battery Manufacturer string */
|
|
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_MFGR);
|
|
memset(batt_str, 0, EC_LPC_MEMMAP_TEXT_MAX);
|
|
battery_manufacturer_name(batt_str, EC_LPC_MEMMAP_TEXT_MAX);
|
|
|
|
/* Battery Model string */
|
|
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_MODEL);
|
|
memset(batt_str, 0, EC_LPC_MEMMAP_TEXT_MAX);
|
|
battery_device_name(batt_str, EC_LPC_MEMMAP_TEXT_MAX);
|
|
|
|
/* Battery Type string */
|
|
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_TYPE);
|
|
battery_device_chemistry(batt_str, EC_LPC_MEMMAP_TEXT_MAX);
|
|
|
|
/* Smart battery serial number is 16 bits */
|
|
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_SERIAL);
|
|
memset(batt_str, 0, EC_LPC_MEMMAP_TEXT_MAX);
|
|
if (battery_serial_number(&batt_serial) == 0) {
|
|
*batt_str++ = hex2asc(0xf & (batt_serial >> 12));
|
|
*batt_str++ = hex2asc(0xf & (batt_serial >> 8));
|
|
*batt_str++ = hex2asc(0xf & (batt_serial >> 4));
|
|
*batt_str++ = hex2asc(0xf & batt_serial);
|
|
}
|
|
}
|
|
|
|
/* Prevent battery from going into deep discharge state */
|
|
static void poweroff_wait_ac(void)
|
|
{
|
|
/* Shutdown the main processor */
|
|
if (chipset_in_state(CHIPSET_STATE_ON)) {
|
|
/* chipset_force_state(CHIPSET_STATE_SOFT_OFF);
|
|
* TODO(rong): remove platform dependent code
|
|
*/
|
|
#ifdef CONFIG_POWER_X86POWER
|
|
x86_power_force_shutdown();
|
|
#endif /* CONFIG_POWER_X86POWER */
|
|
}
|
|
|
|
/* TODO(rong): remove this workaround after ec deep sleep */
|
|
while (!get_ac()) {
|
|
/* Check ac_present every 5 seconds */
|
|
usleep(SECOND * 5);
|
|
}
|
|
}
|
|
|
|
/* Common handler for charging states.
|
|
* This handler gets battery charging parameters, charger state, ac state,
|
|
* and timestamp. It also fills memory map and issues power events on state
|
|
* change.
|
|
*/
|
|
static int state_common(struct power_state_context *ctx)
|
|
{
|
|
int rv, d;
|
|
|
|
struct power_state_data *curr = &ctx->curr;
|
|
struct power_state_data *prev = &ctx->prev;
|
|
struct batt_params *batt = &ctx->curr.batt;
|
|
uint8_t *batt_flags = ctx->memmap_batt_flags;
|
|
|
|
/* Copy previous state and init new state */
|
|
ctx->prev = ctx->curr;
|
|
curr->ts = get_time();
|
|
curr->error = 0;
|
|
|
|
/* Detect AC change */
|
|
curr->ac = get_ac();
|
|
if (curr->ac != prev->ac) {
|
|
if (curr->ac) {
|
|
/* AC on
|
|
* Initialize charger to power on reset mode
|
|
*/
|
|
rv = charger_post_init();
|
|
if (rv)
|
|
curr->error |= F_CHARGER_INIT;
|
|
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
|
|
EC_LPC_HOST_EVENT_AC_CONNECTED));
|
|
} else {
|
|
/* AC off */
|
|
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
|
|
EC_LPC_HOST_EVENT_AC_DISCONNECTED));
|
|
}
|
|
}
|
|
|
|
if (curr->ac) {
|
|
*batt_flags |= EC_BATT_FLAG_AC_PRESENT;
|
|
rv = charger_get_voltage(&curr->charging_voltage);
|
|
if (rv) {
|
|
charger_set_voltage(0);
|
|
charger_set_current(0);
|
|
curr->error |= F_CHARGER_VOLTAGE;
|
|
}
|
|
rv = charger_get_current(&curr->charging_current);
|
|
if (rv) {
|
|
charger_set_voltage(0);
|
|
charger_set_current(0);
|
|
curr->error |= F_CHARGER_CURRENT;
|
|
}
|
|
} else
|
|
*batt_flags &= ~EC_BATT_FLAG_AC_PRESENT;
|
|
|
|
rv = battery_temperature(&batt->temperature);
|
|
if (rv) {
|
|
/* Check low battery condition and retry */
|
|
if (curr->ac && !(curr->error & F_CHARGER_MASK) &&
|
|
(curr->charging_voltage == 0 ||
|
|
curr->charging_current == 0)) {
|
|
charger_set_voltage(ctx->battery->voltage_min);
|
|
charger_set_current(ctx->charger->current_min);
|
|
usleep(SECOND);
|
|
rv = battery_temperature(&batt->temperature);
|
|
}
|
|
}
|
|
|
|
if (rv)
|
|
curr->error |= F_BATTERY_TEMPERATURE;
|
|
|
|
rv = battery_voltage(&batt->voltage);
|
|
if (rv)
|
|
curr->error |= F_BATTERY_VOLTAGE;
|
|
*ctx->memmap_batt_volt = batt->voltage;
|
|
|
|
rv = battery_current(&batt->current);
|
|
if (rv)
|
|
curr->error |= F_BATTERY_CURRENT;
|
|
/* Memory mapped value: discharge rate */
|
|
*ctx->memmap_batt_rate = batt->current < 0 ?
|
|
-batt->current : batt->current;
|
|
|
|
rv = battery_desired_voltage(&batt->desired_voltage);
|
|
if (rv)
|
|
curr->error |= F_DESIRED_VOLTAGE;
|
|
|
|
rv = battery_desired_current(&batt->desired_current);
|
|
if (rv)
|
|
curr->error |= F_DESIRED_CURRENT;
|
|
|
|
rv = battery_state_of_charge(&batt->state_of_charge);
|
|
if (rv)
|
|
curr->error |= F_BATTERY_STATE_OF_CHARGE;
|
|
|
|
/* Prevent deep discharging */
|
|
if (!curr->ac)
|
|
if ((batt->state_of_charge < BATTERY_LEVEL_SHUTDOWN &&
|
|
!(curr->error & F_BATTERY_STATE_OF_CHARGE)) ||
|
|
(batt->voltage <= ctx->battery->voltage_min &&
|
|
!(curr->error & F_BATTERY_VOLTAGE)))
|
|
poweroff_wait_ac();
|
|
|
|
/* Check battery presence */
|
|
if (curr->error & F_BATTERY_MASK) {
|
|
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_BATT_PRESENT;
|
|
return curr->error;
|
|
}
|
|
|
|
*ctx->memmap_batt_flags |= EC_BATT_FLAG_BATT_PRESENT;
|
|
|
|
/* Battery charge level low */
|
|
if (batt->state_of_charge <= BATTERY_LEVEL_LOW &&
|
|
prev->batt.state_of_charge > BATTERY_LEVEL_LOW)
|
|
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
|
|
EC_LPC_HOST_EVENT_BATTERY_LOW));
|
|
|
|
/* Battery charge level critical */
|
|
if (batt->state_of_charge <= BATTERY_LEVEL_CRITICAL) {
|
|
*ctx->memmap_batt_flags |= EC_BATT_FLAG_LEVEL_CRITICAL;
|
|
/* Send battery critical host event */
|
|
if (prev->batt.state_of_charge > BATTERY_LEVEL_CRITICAL)
|
|
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
|
|
EC_LPC_HOST_EVENT_BATTERY_CRITICAL));
|
|
} else
|
|
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_LEVEL_CRITICAL;
|
|
|
|
|
|
/* Apply battery pack vendor charging method */
|
|
battery_vendor_params(batt);
|
|
|
|
#ifdef CONFIG_CHARGING_CURRENT_LIMIT
|
|
if (batt->desired_current > CONFIG_CHARGING_CURRENT_LIMIT)
|
|
batt->desired_current = CONFIG_CHARGING_CURRENT_LIMIT;
|
|
#endif
|
|
|
|
rv = battery_get_battery_mode(&d);
|
|
if (rv) {
|
|
curr->error |= F_BATTERY_MODE;
|
|
} else {
|
|
if (d & MODE_CAPACITY) {
|
|
/* Battery capacity mode was set to mW
|
|
* reset it back to mAh
|
|
*/
|
|
d &= ~MODE_CAPACITY;
|
|
rv = battery_set_battery_mode(d);
|
|
if (rv)
|
|
ctx->curr.error |= F_BATTERY_MODE;
|
|
}
|
|
}
|
|
rv = battery_remaining_capacity(&d);
|
|
if (rv)
|
|
ctx->curr.error |= F_BATTERY_CAPACITY;
|
|
else
|
|
*ctx->memmap_batt_cap = d;
|
|
|
|
return ctx->curr.error;
|
|
}
|
|
|
|
/* Init state handler
|
|
* - check ac, charger, battery and temperature
|
|
* - initialize charger
|
|
* - new states: DISCHARGE, IDLE
|
|
*/
|
|
static enum power_state state_init(struct power_state_context *ctx)
|
|
{
|
|
/* Stop charger, unconditionally */
|
|
charger_set_current(0);
|
|
charger_set_voltage(0);
|
|
|
|
/* If AC is not present, switch to discharging state */
|
|
if (!ctx->curr.ac)
|
|
return PWR_STATE_DISCHARGE;
|
|
|
|
/* Check general error conditions */
|
|
if (ctx->curr.error)
|
|
return PWR_STATE_ERROR;
|
|
|
|
/* Update static battery info */
|
|
update_battery_info();
|
|
|
|
/* Send battery event to host */
|
|
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
|
|
EC_LPC_HOST_EVENT_BATTERY));
|
|
|
|
return PWR_STATE_IDLE;
|
|
}
|
|
|
|
/* Idle state handler
|
|
* - both charger and battery are online
|
|
* - detect charger and battery status change
|
|
* - new states: CHARGE, INIT
|
|
*/
|
|
static enum power_state state_idle(struct power_state_context *ctx)
|
|
{
|
|
struct batt_params *batt = &ctx->curr.batt;
|
|
const struct charger_info *c_info = ctx->charger;
|
|
|
|
if (!ctx->curr.ac)
|
|
return PWR_STATE_INIT;
|
|
|
|
if (ctx->curr.error)
|
|
return PWR_STATE_ERROR;
|
|
|
|
/* Prevent charging in idle mode */
|
|
if (ctx->curr.charging_voltage ||
|
|
ctx->curr.charging_current)
|
|
return PWR_STATE_INIT;
|
|
|
|
if (ctx->curr.batt.state_of_charge >= STOP_CHARGE_THRESHOLD)
|
|
return PWR_STATE_UNCHANGE;
|
|
|
|
/* Configure init charger state and switch to charge state */
|
|
if (ctx->curr.batt.desired_voltage &&
|
|
ctx->curr.batt.desired_current) {
|
|
/* Set charger output constraints */
|
|
if (batt->desired_current < ctx->charger->current_min) {
|
|
/* Trickle charging */
|
|
if (charger_set_current(c_info->current_min) ||
|
|
charger_set_voltage(batt->voltage))
|
|
return PWR_STATE_ERROR;
|
|
ctx->trickle_charging_time = get_time();
|
|
} else {
|
|
/* Normal charging */
|
|
if (charger_set_voltage(batt->desired_voltage) ||
|
|
charger_set_current(batt->desired_current))
|
|
return PWR_STATE_ERROR;
|
|
}
|
|
ctx->charger_update_time = get_time();
|
|
return PWR_STATE_CHARGE;
|
|
}
|
|
|
|
return PWR_STATE_UNCHANGE;
|
|
}
|
|
|
|
/* Charge state handler
|
|
* - detect battery status change
|
|
* - new state: INIT
|
|
*/
|
|
static enum power_state state_charge(struct power_state_context *ctx)
|
|
{
|
|
if (ctx->curr.error)
|
|
return PWR_STATE_ERROR;
|
|
|
|
if (ctx->curr.batt.desired_current < ctx->charger->current_min)
|
|
return trickle_charge(ctx);
|
|
|
|
/* Check charger reset */
|
|
if (ctx->curr.charging_voltage == 0 ||
|
|
ctx->curr.charging_current == 0)
|
|
return PWR_STATE_INIT;
|
|
|
|
if (!ctx->curr.ac)
|
|
return PWR_STATE_INIT;
|
|
|
|
if (ctx->curr.batt.state_of_charge >= STOP_CHARGE_THRESHOLD) {
|
|
if (charger_set_voltage(0) || charger_set_current(0))
|
|
return PWR_STATE_ERROR;
|
|
return PWR_STATE_IDLE;
|
|
}
|
|
|
|
if ((ctx->curr.batt.desired_voltage != ctx->curr.charging_voltage) ||
|
|
(ctx->curr.batt.desired_current != ctx->curr.charging_current) ||
|
|
(ctx->curr.ts.val - ctx->charger_update_time.val >
|
|
CHARGER_UPDATE_PERIOD)) {
|
|
if (ctx->curr.batt.desired_current < ctx->charger->current_min)
|
|
return PWR_STATE_INIT;
|
|
|
|
if (charger_set_voltage(ctx->curr.batt.desired_voltage) ||
|
|
charger_set_current(ctx->curr.batt.desired_current))
|
|
return PWR_STATE_ERROR;
|
|
ctx->charger_update_time = get_time();
|
|
}
|
|
|
|
return PWR_STATE_UNCHANGE;
|
|
}
|
|
|
|
/* Discharge state handler
|
|
* - detect ac status
|
|
* - new state: INIT
|
|
*/
|
|
static enum power_state state_discharge(struct power_state_context *ctx)
|
|
{
|
|
struct batt_params *batt = &ctx->curr.batt;
|
|
if (ctx->curr.ac)
|
|
return PWR_STATE_INIT;
|
|
|
|
if (ctx->curr.error)
|
|
return PWR_STATE_ERROR;
|
|
|
|
/* Overtemp in discharging state
|
|
* - poweroff host and ec
|
|
*/
|
|
if (batt->temperature > ctx->battery->temp_discharge_max ||
|
|
batt->temperature < ctx->battery->temp_discharge_min)
|
|
poweroff_wait_ac();
|
|
|
|
return PWR_STATE_UNCHANGE;
|
|
}
|
|
|
|
/* Error state handler
|
|
* - check charger and battery communication
|
|
* - log error
|
|
* - new state: INIT
|
|
*/
|
|
static enum power_state state_error(struct power_state_context *ctx)
|
|
{
|
|
static int logged_error;
|
|
|
|
if (!ctx->curr.error) {
|
|
logged_error = 0;
|
|
return PWR_STATE_INIT;
|
|
}
|
|
|
|
/* Debug output */
|
|
if (ctx->curr.error != logged_error) {
|
|
CPRINTF("[Charge error: flag[%08b -> %08b], ac %d, "
|
|
" charger %s, battery %s\n",
|
|
logged_error, ctx->curr.error, ctx->curr.ac,
|
|
(ctx->curr.error & F_CHARGER_MASK) ?
|
|
"(err)" : "ok",
|
|
(ctx->curr.error & F_BATTERY_MASK) ?
|
|
"(err)" : "ok");
|
|
|
|
logged_error = ctx->curr.error;
|
|
}
|
|
|
|
return PWR_STATE_UNCHANGE;
|
|
}
|
|
|
|
static void charging_progress(struct power_state_context *ctx)
|
|
{
|
|
int seconds, minutes;
|
|
|
|
if (ctx->curr.batt.state_of_charge !=
|
|
ctx->prev.batt.state_of_charge) {
|
|
if (ctx->curr.ac)
|
|
battery_time_to_full(&minutes);
|
|
else
|
|
battery_time_to_empty(&minutes);
|
|
|
|
CPRINTF("[Battery %3d%% / %dh:%d]\n",
|
|
ctx->curr.batt.state_of_charge,
|
|
minutes / 60, minutes % 60);
|
|
return;
|
|
}
|
|
|
|
if (ctx->curr.charging_voltage != ctx->prev.charging_voltage &&
|
|
ctx->trickle_charging_time.val) {
|
|
/* Calculating minutes by dividing usec by 60 million
|
|
* GNU toolchain generate architecture dependent calls
|
|
* instead of machine code when the divisor is large.
|
|
* Hence following calculation was broke into 2 lines.
|
|
*/
|
|
seconds = (int)(get_time().val -
|
|
ctx->trickle_charging_time.val) / (int)SECOND;
|
|
minutes = seconds / 60;
|
|
CPRINTF("[Precharge CHG(%dmV) BATT(%dmV %dmA) "
|
|
"%dh:%d]\n", ctx->curr.charging_voltage,
|
|
ctx->curr.batt.voltage, ctx->curr.batt.current,
|
|
minutes / 60, minutes % 60);
|
|
}
|
|
}
|
|
|
|
/* Battery charging task */
|
|
void charge_state_machine_task(void)
|
|
{
|
|
struct power_state_context ctx;
|
|
timestamp_t ts;
|
|
int sleep_usec, diff_usec;
|
|
enum power_state new_state;
|
|
uint8_t batt_flags;
|
|
|
|
ctx.prev.state = PWR_STATE_INIT;
|
|
ctx.curr.state = PWR_STATE_INIT;
|
|
ctx.trickle_charging_time.val = 0;
|
|
ctx.battery = battery_get_info();
|
|
ctx.charger = charger_get_info();
|
|
|
|
/* Setup LPC direct memmap */
|
|
ctx.memmap_batt_volt = (uint32_t *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_VOLT);
|
|
ctx.memmap_batt_rate = (uint32_t *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_RATE);
|
|
ctx.memmap_batt_cap = (uint32_t *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_CAP);
|
|
ctx.memmap_batt_flags = (uint8_t *)(lpc_get_memmap_range() +
|
|
EC_LPC_MEMMAP_BATT_FLAG);
|
|
|
|
while (1) {
|
|
|
|
state_common(&ctx);
|
|
|
|
switch (ctx.prev.state) {
|
|
case PWR_STATE_INIT:
|
|
new_state = state_init(&ctx);
|
|
break;
|
|
case PWR_STATE_IDLE:
|
|
new_state = state_idle(&ctx);
|
|
break;
|
|
case PWR_STATE_DISCHARGE:
|
|
new_state = state_discharge(&ctx);
|
|
break;
|
|
case PWR_STATE_CHARGE:
|
|
new_state = state_charge(&ctx);
|
|
break;
|
|
case PWR_STATE_ERROR:
|
|
new_state = state_error(&ctx);
|
|
break;
|
|
default:
|
|
CPRINTF("[Undefined charging state %d]\n",
|
|
ctx.curr.state);
|
|
ctx.curr.state = PWR_STATE_ERROR;
|
|
new_state = PWR_STATE_ERROR;
|
|
}
|
|
|
|
if (new_state) {
|
|
ctx.curr.state = new_state;
|
|
CPRINTF("[Charge state %s -> %s]\n",
|
|
state_name[ctx.prev.state],
|
|
state_name[new_state]);
|
|
}
|
|
|
|
switch (new_state) {
|
|
case PWR_STATE_IDLE:
|
|
batt_flags = *ctx.memmap_batt_flags;
|
|
batt_flags &= ~EC_BATT_FLAG_CHARGING;
|
|
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
|
|
*ctx.memmap_batt_flags = batt_flags;
|
|
|
|
/* Charge done */
|
|
powerled_set(POWERLED_GREEN);
|
|
|
|
sleep_usec = POLL_PERIOD_LONG;
|
|
break;
|
|
case PWR_STATE_DISCHARGE:
|
|
batt_flags = *ctx.memmap_batt_flags;
|
|
batt_flags &= ~EC_BATT_FLAG_CHARGING;
|
|
batt_flags |= EC_BATT_FLAG_DISCHARGING;
|
|
*ctx.memmap_batt_flags = batt_flags;
|
|
sleep_usec = POLL_PERIOD_LONG;
|
|
break;
|
|
case PWR_STATE_CHARGE:
|
|
batt_flags = *ctx.memmap_batt_flags;
|
|
batt_flags |= EC_BATT_FLAG_CHARGING;
|
|
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
|
|
*ctx.memmap_batt_flags = batt_flags;
|
|
|
|
/* Charging */
|
|
powerled_set(POWERLED_YELLOW);
|
|
|
|
sleep_usec = POLL_PERIOD_CHARGE;
|
|
break;
|
|
case PWR_STATE_ERROR:
|
|
/* Error */
|
|
powerled_set(POWERLED_RED);
|
|
|
|
sleep_usec = POLL_PERIOD_CHARGE;
|
|
default:
|
|
sleep_usec = POLL_PERIOD_SHORT;
|
|
}
|
|
|
|
/* Show charging progress in console */
|
|
charging_progress(&ctx);
|
|
|
|
ts = get_time();
|
|
diff_usec = (int)(ts.val - ctx.curr.ts.val);
|
|
sleep_usec -= diff_usec;
|
|
|
|
if (sleep_usec < MIN_SLEEP_USEC)
|
|
sleep_usec = MIN_SLEEP_USEC;
|
|
if (sleep_usec > MAX_SLEEP_USEC)
|
|
sleep_usec = MAX_SLEEP_USEC;
|
|
|
|
usleep(sleep_usec);
|
|
}
|
|
}
|
|
|