Files
OpenCellular/common/charge_state.c
Rong Chang 5774ebbd78 Handle overtemp condition in discharging state
This change adds battery operating temperature check. Host and EC
will be turned off when overtemp. EC can be waked up by predefined
external signals like key press or AC_PRESENT gpio.

For safty reason, this change does not check battery temperature
after EC deep sleep.

Signed-off-by: Rong Chang <rongchang@chromium.org>
BUG=chrome-os-partner:8451,9108
TEST=none
  Mock battery_temperature() fucntion to test.

Change-Id: I3203515b3df86192f690f9b98901020209ce49b3
2012-04-25 15:54:26 +08:00

586 lines
15 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Battery charging task and state machine.
*/
#include "battery.h"
#include "battery_pack.h"
#include "board.h"
#include "charge_state.h"
#include "charger.h"
#include "chipset.h"
#include "console.h"
#include "gpio.h"
#include "lpc.h"
#include "lpc_commands.h"
#include "power_led.h"
#include "smart_battery.h"
#include "system.h"
#include "timer.h"
#include "util.h"
#include "x86_power.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_CHARGER, outstr)
#define CPRINTF(format, args...) cprintf(CC_CHARGER, format, ## args)
/* Stop charge when state of charge reaches this percentage */
#define STOP_CHARGE_THRESHOLD 100
static const char * const state_name[] = POWER_STATE_NAME_TABLE;
/* helper function(s) */
static inline int get_ac(void)
{
return gpio_get_level(GPIO_AC_PRESENT);
}
/* Battery information used to fill ACPI _BIF and/or _BIX */
static void update_battery_info(void)
{
char *batt_str;
int batt_serial;
/* Design Capacity of Full */
battery_design_capacity((int *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_DCAP));
/* Design Voltage */
battery_design_voltage((int *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_DVLT));
/* Last Full Charge Capacity */
battery_full_charge_capacity((int *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_LFCC));
/* Cycle Count */
battery_cycle_count((int *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_CCNT));
/* Battery Manufacturer string */
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_MFGR);
memset(batt_str, 0, EC_LPC_MEMMAP_TEXT_MAX);
battery_manufacturer_name(batt_str, EC_LPC_MEMMAP_TEXT_MAX);
/* Battery Model string */
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_MODEL);
memset(batt_str, 0, EC_LPC_MEMMAP_TEXT_MAX);
battery_device_name(batt_str, EC_LPC_MEMMAP_TEXT_MAX);
/* Battery Type string */
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_TYPE);
battery_device_chemistry(batt_str, EC_LPC_MEMMAP_TEXT_MAX);
/* Smart battery serial number is 16 bits */
batt_str = (char *)(lpc_get_memmap_range() + EC_LPC_MEMMAP_BATT_SERIAL);
memset(batt_str, 0, EC_LPC_MEMMAP_TEXT_MAX);
if (battery_serial_number(&batt_serial) == 0) {
*batt_str++ = hex2asc(0xf & (batt_serial >> 12));
*batt_str++ = hex2asc(0xf & (batt_serial >> 8));
*batt_str++ = hex2asc(0xf & (batt_serial >> 4));
*batt_str++ = hex2asc(0xf & batt_serial);
}
}
/* Prevent battery from going into deep discharge state */
static void poweroff_wait_ac(void)
{
/* Shutdown the main processor */
if (chipset_in_state(CHIPSET_STATE_ON)) {
/* chipset_force_state(CHIPSET_STATE_SOFT_OFF);
* TODO(rong): remove platform dependent code
*/
#ifdef CONFIG_POWER_X86POWER
x86_power_force_shutdown();
#endif /* CONFIG_POWER_X86POWER */
}
/* TODO(rong): remove this workaround after ec deep sleep */
while (!get_ac()) {
/* Check ac_present every 5 seconds */
usleep(SECOND * 5);
}
}
/* Common handler for charging states.
* This handler gets battery charging parameters, charger state, ac state,
* and timestamp. It also fills memory map and issues power events on state
* change.
*/
static int state_common(struct power_state_context *ctx)
{
int rv, d;
struct power_state_data *curr = &ctx->curr;
struct power_state_data *prev = &ctx->prev;
struct batt_params *batt = &ctx->curr.batt;
uint8_t *batt_flags = ctx->memmap_batt_flags;
/* Copy previous state and init new state */
ctx->prev = ctx->curr;
curr->ts = get_time();
curr->error = 0;
/* Detect AC change */
curr->ac = get_ac();
if (curr->ac != prev->ac) {
if (curr->ac) {
/* AC on
* Initialize charger to power on reset mode
*/
rv = charger_post_init();
if (rv)
curr->error |= F_CHARGER_INIT;
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
EC_LPC_HOST_EVENT_AC_CONNECTED));
} else {
/* AC off */
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
EC_LPC_HOST_EVENT_AC_DISCONNECTED));
}
}
if (curr->ac) {
*batt_flags |= EC_BATT_FLAG_AC_PRESENT;
rv = charger_get_voltage(&curr->charging_voltage);
if (rv) {
charger_set_voltage(0);
charger_set_current(0);
curr->error |= F_CHARGER_VOLTAGE;
}
rv = charger_get_current(&curr->charging_current);
if (rv) {
charger_set_voltage(0);
charger_set_current(0);
curr->error |= F_CHARGER_CURRENT;
}
} else
*batt_flags &= ~EC_BATT_FLAG_AC_PRESENT;
rv = battery_temperature(&batt->temperature);
if (rv) {
/* Check low battery condition and retry */
if (curr->ac && !(curr->error & F_CHARGER_MASK) &&
(curr->charging_voltage == 0 ||
curr->charging_current == 0)) {
charger_set_voltage(ctx->battery->voltage_min);
charger_set_current(ctx->charger->current_min);
usleep(SECOND);
rv = battery_temperature(&batt->temperature);
}
}
if (rv)
curr->error |= F_BATTERY_TEMPERATURE;
rv = battery_voltage(&batt->voltage);
if (rv)
curr->error |= F_BATTERY_VOLTAGE;
*ctx->memmap_batt_volt = batt->voltage;
rv = battery_current(&batt->current);
if (rv)
curr->error |= F_BATTERY_CURRENT;
/* Memory mapped value: discharge rate */
*ctx->memmap_batt_rate = batt->current < 0 ?
-batt->current : batt->current;
rv = battery_desired_voltage(&batt->desired_voltage);
if (rv)
curr->error |= F_DESIRED_VOLTAGE;
rv = battery_desired_current(&batt->desired_current);
if (rv)
curr->error |= F_DESIRED_CURRENT;
rv = battery_state_of_charge(&batt->state_of_charge);
if (rv)
curr->error |= F_BATTERY_STATE_OF_CHARGE;
/* Prevent deep discharging */
if (!curr->ac)
if ((batt->state_of_charge < BATTERY_LEVEL_SHUTDOWN &&
!(curr->error & F_BATTERY_STATE_OF_CHARGE)) ||
(batt->voltage <= ctx->battery->voltage_min &&
!(curr->error & F_BATTERY_VOLTAGE)))
poweroff_wait_ac();
/* Check battery presence */
if (curr->error & F_BATTERY_MASK) {
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_BATT_PRESENT;
return curr->error;
}
*ctx->memmap_batt_flags |= EC_BATT_FLAG_BATT_PRESENT;
/* Battery charge level low */
if (batt->state_of_charge <= BATTERY_LEVEL_LOW &&
prev->batt.state_of_charge > BATTERY_LEVEL_LOW)
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
EC_LPC_HOST_EVENT_BATTERY_LOW));
/* Battery charge level critical */
if (batt->state_of_charge <= BATTERY_LEVEL_CRITICAL) {
*ctx->memmap_batt_flags |= EC_BATT_FLAG_LEVEL_CRITICAL;
/* Send battery critical host event */
if (prev->batt.state_of_charge > BATTERY_LEVEL_CRITICAL)
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
EC_LPC_HOST_EVENT_BATTERY_CRITICAL));
} else
*ctx->memmap_batt_flags &= ~EC_BATT_FLAG_LEVEL_CRITICAL;
/* Apply battery pack vendor charging method */
battery_vendor_params(batt);
#ifdef CONFIG_CHARGING_CURRENT_LIMIT
if (batt->desired_current > CONFIG_CHARGING_CURRENT_LIMIT)
batt->desired_current = CONFIG_CHARGING_CURRENT_LIMIT;
#endif
rv = battery_get_battery_mode(&d);
if (rv) {
curr->error |= F_BATTERY_MODE;
} else {
if (d & MODE_CAPACITY) {
/* Battery capacity mode was set to mW
* reset it back to mAh
*/
d &= ~MODE_CAPACITY;
rv = battery_set_battery_mode(d);
if (rv)
ctx->curr.error |= F_BATTERY_MODE;
}
}
rv = battery_remaining_capacity(&d);
if (rv)
ctx->curr.error |= F_BATTERY_CAPACITY;
else
*ctx->memmap_batt_cap = d;
return ctx->curr.error;
}
/* Init state handler
* - check ac, charger, battery and temperature
* - initialize charger
* - new states: DISCHARGE, IDLE
*/
static enum power_state state_init(struct power_state_context *ctx)
{
/* Stop charger, unconditionally */
charger_set_current(0);
charger_set_voltage(0);
/* If AC is not present, switch to discharging state */
if (!ctx->curr.ac)
return PWR_STATE_DISCHARGE;
/* Check general error conditions */
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Update static battery info */
update_battery_info();
/* Send battery event to host */
lpc_set_host_events(EC_LPC_HOST_EVENT_MASK(
EC_LPC_HOST_EVENT_BATTERY));
return PWR_STATE_IDLE;
}
/* Idle state handler
* - both charger and battery are online
* - detect charger and battery status change
* - new states: CHARGE, INIT
*/
static enum power_state state_idle(struct power_state_context *ctx)
{
struct batt_params *batt = &ctx->curr.batt;
const struct charger_info *c_info = ctx->charger;
if (!ctx->curr.ac)
return PWR_STATE_INIT;
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Prevent charging in idle mode */
if (ctx->curr.charging_voltage ||
ctx->curr.charging_current)
return PWR_STATE_INIT;
if (ctx->curr.batt.state_of_charge >= STOP_CHARGE_THRESHOLD)
return PWR_STATE_UNCHANGE;
/* Configure init charger state and switch to charge state */
if (ctx->curr.batt.desired_voltage &&
ctx->curr.batt.desired_current) {
/* Set charger output constraints */
if (batt->desired_current < ctx->charger->current_min) {
/* Trickle charging */
if (charger_set_current(c_info->current_min) ||
charger_set_voltage(batt->voltage))
return PWR_STATE_ERROR;
ctx->trickle_charging_time = get_time();
} else {
/* Normal charging */
if (charger_set_voltage(batt->desired_voltage) ||
charger_set_current(batt->desired_current))
return PWR_STATE_ERROR;
}
ctx->charger_update_time = get_time();
return PWR_STATE_CHARGE;
}
return PWR_STATE_UNCHANGE;
}
/* Charge state handler
* - detect battery status change
* - new state: INIT
*/
static enum power_state state_charge(struct power_state_context *ctx)
{
if (ctx->curr.error)
return PWR_STATE_ERROR;
if (ctx->curr.batt.desired_current < ctx->charger->current_min)
return trickle_charge(ctx);
/* Check charger reset */
if (ctx->curr.charging_voltage == 0 ||
ctx->curr.charging_current == 0)
return PWR_STATE_INIT;
if (!ctx->curr.ac)
return PWR_STATE_INIT;
if (ctx->curr.batt.state_of_charge >= STOP_CHARGE_THRESHOLD) {
if (charger_set_voltage(0) || charger_set_current(0))
return PWR_STATE_ERROR;
return PWR_STATE_IDLE;
}
if ((ctx->curr.batt.desired_voltage != ctx->curr.charging_voltage) ||
(ctx->curr.batt.desired_current != ctx->curr.charging_current) ||
(ctx->curr.ts.val - ctx->charger_update_time.val >
CHARGER_UPDATE_PERIOD)) {
if (ctx->curr.batt.desired_current < ctx->charger->current_min)
return PWR_STATE_INIT;
if (charger_set_voltage(ctx->curr.batt.desired_voltage) ||
charger_set_current(ctx->curr.batt.desired_current))
return PWR_STATE_ERROR;
ctx->charger_update_time = get_time();
}
return PWR_STATE_UNCHANGE;
}
/* Discharge state handler
* - detect ac status
* - new state: INIT
*/
static enum power_state state_discharge(struct power_state_context *ctx)
{
struct batt_params *batt = &ctx->curr.batt;
if (ctx->curr.ac)
return PWR_STATE_INIT;
if (ctx->curr.error)
return PWR_STATE_ERROR;
/* Overtemp in discharging state
* - poweroff host and ec
*/
if (batt->temperature > ctx->battery->temp_discharge_max ||
batt->temperature < ctx->battery->temp_discharge_min)
poweroff_wait_ac();
return PWR_STATE_UNCHANGE;
}
/* Error state handler
* - check charger and battery communication
* - log error
* - new state: INIT
*/
static enum power_state state_error(struct power_state_context *ctx)
{
static int logged_error;
if (!ctx->curr.error) {
logged_error = 0;
return PWR_STATE_INIT;
}
/* Debug output */
if (ctx->curr.error != logged_error) {
CPRINTF("[Charge error: flag[%08b -> %08b], ac %d, "
" charger %s, battery %s\n",
logged_error, ctx->curr.error, ctx->curr.ac,
(ctx->curr.error & F_CHARGER_MASK) ?
"(err)" : "ok",
(ctx->curr.error & F_BATTERY_MASK) ?
"(err)" : "ok");
logged_error = ctx->curr.error;
}
return PWR_STATE_UNCHANGE;
}
static void charging_progress(struct power_state_context *ctx)
{
int seconds, minutes;
if (ctx->curr.batt.state_of_charge !=
ctx->prev.batt.state_of_charge) {
if (ctx->curr.ac)
battery_time_to_full(&minutes);
else
battery_time_to_empty(&minutes);
CPRINTF("[Battery %3d%% / %dh:%d]\n",
ctx->curr.batt.state_of_charge,
minutes / 60, minutes % 60);
return;
}
if (ctx->curr.charging_voltage != ctx->prev.charging_voltage &&
ctx->trickle_charging_time.val) {
/* Calculating minutes by dividing usec by 60 million
* GNU toolchain generate architecture dependent calls
* instead of machine code when the divisor is large.
* Hence following calculation was broke into 2 lines.
*/
seconds = (int)(get_time().val -
ctx->trickle_charging_time.val) / (int)SECOND;
minutes = seconds / 60;
CPRINTF("[Precharge CHG(%dmV) BATT(%dmV %dmA) "
"%dh:%d]\n", ctx->curr.charging_voltage,
ctx->curr.batt.voltage, ctx->curr.batt.current,
minutes / 60, minutes % 60);
}
}
/* Battery charging task */
void charge_state_machine_task(void)
{
struct power_state_context ctx;
timestamp_t ts;
int sleep_usec, diff_usec;
enum power_state new_state;
uint8_t batt_flags;
ctx.prev.state = PWR_STATE_INIT;
ctx.curr.state = PWR_STATE_INIT;
ctx.trickle_charging_time.val = 0;
ctx.battery = battery_get_info();
ctx.charger = charger_get_info();
/* Setup LPC direct memmap */
ctx.memmap_batt_volt = (uint32_t *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_VOLT);
ctx.memmap_batt_rate = (uint32_t *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_RATE);
ctx.memmap_batt_cap = (uint32_t *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_CAP);
ctx.memmap_batt_flags = (uint8_t *)(lpc_get_memmap_range() +
EC_LPC_MEMMAP_BATT_FLAG);
while (1) {
state_common(&ctx);
switch (ctx.prev.state) {
case PWR_STATE_INIT:
new_state = state_init(&ctx);
break;
case PWR_STATE_IDLE:
new_state = state_idle(&ctx);
break;
case PWR_STATE_DISCHARGE:
new_state = state_discharge(&ctx);
break;
case PWR_STATE_CHARGE:
new_state = state_charge(&ctx);
break;
case PWR_STATE_ERROR:
new_state = state_error(&ctx);
break;
default:
CPRINTF("[Undefined charging state %d]\n",
ctx.curr.state);
ctx.curr.state = PWR_STATE_ERROR;
new_state = PWR_STATE_ERROR;
}
if (new_state) {
ctx.curr.state = new_state;
CPRINTF("[Charge state %s -> %s]\n",
state_name[ctx.prev.state],
state_name[new_state]);
}
switch (new_state) {
case PWR_STATE_IDLE:
batt_flags = *ctx.memmap_batt_flags;
batt_flags &= ~EC_BATT_FLAG_CHARGING;
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
*ctx.memmap_batt_flags = batt_flags;
/* Charge done */
powerled_set(POWERLED_GREEN);
sleep_usec = POLL_PERIOD_LONG;
break;
case PWR_STATE_DISCHARGE:
batt_flags = *ctx.memmap_batt_flags;
batt_flags &= ~EC_BATT_FLAG_CHARGING;
batt_flags |= EC_BATT_FLAG_DISCHARGING;
*ctx.memmap_batt_flags = batt_flags;
sleep_usec = POLL_PERIOD_LONG;
break;
case PWR_STATE_CHARGE:
batt_flags = *ctx.memmap_batt_flags;
batt_flags |= EC_BATT_FLAG_CHARGING;
batt_flags &= ~EC_BATT_FLAG_DISCHARGING;
*ctx.memmap_batt_flags = batt_flags;
/* Charging */
powerled_set(POWERLED_YELLOW);
sleep_usec = POLL_PERIOD_CHARGE;
break;
case PWR_STATE_ERROR:
/* Error */
powerled_set(POWERLED_RED);
sleep_usec = POLL_PERIOD_CHARGE;
default:
sleep_usec = POLL_PERIOD_SHORT;
}
/* Show charging progress in console */
charging_progress(&ctx);
ts = get_time();
diff_usec = (int)(ts.val - ctx.curr.ts.val);
sleep_usec -= diff_usec;
if (sleep_usec < MIN_SLEEP_USEC)
sleep_usec = MIN_SLEEP_USEC;
if (sleep_usec > MAX_SLEEP_USEC)
sleep_usec = MAX_SLEEP_USEC;
usleep(sleep_usec);
}
}