Files
OpenCellular/driver/temp_sensor/tmp006.c
Bill Richardson bb15561db5 cleanup: DECLARE_CONSOLE_COMMAND only needs 4 args
Since pretty much always, we've declared console commands to take
a "longhelp" argument with detailed explanations of what the
command does. But since almost as long, we've never actually used
that argument for anything - we just silently throw it away in
the macro. There's only one command (usbchargemode) that even
thinks it defines that argument.

We're never going to use this, let's just get rid of it.

BUG=none
BRANCH=none
CQ-DEPEND=CL:*279060
CQ-DEPEND=CL:*279158
CQ-DEPEND=CL:*279037
TEST=make buildall; tested on Cr50 hardware

Everything builds. Since we never used this arg anyway, there had
better not be any difference in the result.

Change-Id: Id3f71a53d02e3dc625cfcc12aa71ecb50e35eb9f
Signed-off-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-on: https://chromium-review.googlesource.com/374163
Reviewed-by: Myles Watson <mylesgw@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2016-08-24 16:30:10 +00:00

497 lines
12 KiB
C

/* Copyright (c) 2014 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* TMP006 temperature sensor module for Chrome EC */
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "hooks.h"
#include "host_command.h"
#include "i2c.h"
#include "math.h"
#include "task.h"
#include "temp_sensor.h"
#include "tmp006.h"
#include "util.h"
/* Console output macros */
#define CPUTS(outstr) cputs(CC_THERMAL, outstr)
#define CPRINTS(format, args...) cprints(CC_THERMAL, format, ## args)
/*
* Alg 0 was what's in the TMP006 User's Guide. Alg 1 is Alg 0, but with
* some filters applied to the Tdie input and Tobj output (see
* crosbug.com/p/32260).
*/
#define ALGORITHM_NUM 1
#define ALGORITHM_PARAMS 12
/* Flags for tdata->fail */
#define FAIL_INIT (1 << 0) /* Just initialized */
#define FAIL_POWER (1 << 1) /* Sensor not powered */
#define FAIL_I2C (1 << 2) /* I2C communication error */
#define FAIL_NOT_READY (1 << 3) /* Data not ready */
/* State and conversion factors to track for each sensor */
struct tmp006_data_t {
/* chip info */
int16_t v_raw; /* TMP006_REG_VOBJ */
int16_t t_raw0; /* TMP006_REG_TDIE */
int fail; /* Fail flags; non-zero if last read failed */
/* calibration params */
float s0, a1, a2; /* Sensitivity factors */
float b0, b1, b2; /* Self-heating correction */
float c2; /* Seebeck effect */
float d0, d1, ds; /* Tdie filter and slope adjustment */
float e0, e1; /* Tobj output filter */
/* FIR filter stages */
float tdie1, tobj1;
};
static struct tmp006_data_t tmp006_data[TMP006_COUNT];
/* Default state and conversion factors */
static const struct tmp006_data_t tmp006_data_default = {
.fail = FAIL_INIT,
/* Alg 0 params from User's Guide */
.s0 = 0.0f, /* zero == "uncalibrated" */
.a1 = 1.75e-3f,
.a2 = -1.678e-5f,
.b0 = -2.94e-5f,
.b1 = -5.7e-7f,
.b2 = 4.63e-9f,
.c2 = 13.4f,
/* Additional Alg 1 filter params */
.d0 = 0.2f,
.d1 = 0.8f,
.ds = 1.48e-4,
.e0 = 0.1f,
.e1 = 0.9f,
};
static int tmp006_has_power(int idx)
{
#ifdef CONFIG_TEMP_SENSOR_POWER_GPIO
return gpio_get_level(CONFIG_TEMP_SENSOR_POWER_GPIO);
#else
return 1;
#endif
}
static void tmp006_poll_sensor(int sensor_id)
{
struct tmp006_data_t *tdata = tmp006_data + sensor_id;
int t, v, rv;
int addr = tmp006_sensors[sensor_id].addr;
/* Invalidate the filter history if there is any error */
if (tdata->fail) {
tdata->tdie1 = 0.0f;
tdata->tobj1 = 0.0;
}
if (!tmp006_has_power(sensor_id)) {
tdata->fail |= FAIL_POWER;
return;
}
/*
* If sensor has just initialized and/or has lost power, wait for
* data ready; otherwise, we read garbage data.
*/
if (tdata->fail & (FAIL_POWER | FAIL_INIT)) {
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_CONFIG, &v);
if (rv) {
tdata->fail |= FAIL_I2C;
return;
} else if (!(v & 0x80)) {
/* Bit 7 is the Data Ready bit */
tdata->fail |= FAIL_NOT_READY;
return;
}
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_TDIE, &t);
if (rv) {
tdata->fail |= FAIL_I2C;
return;
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_VOBJ, &v);
if (rv) {
tdata->fail |= FAIL_I2C;
return;
}
tdata->t_raw0 = t;
tdata->v_raw = v;
tdata->fail = 0;
}
/*****************************************************************************/
/* Hooks */
static void tmp006_init(void)
{
int i;
for (i = 0; i < TMP006_COUNT; ++i)
tmp006_data[i] = tmp006_data_default;
}
DECLARE_HOOK(HOOK_INIT, tmp006_init, HOOK_PRIO_DEFAULT);
static void tmp006_poll(void)
{
int i;
for (i = 0; i < TMP006_COUNT; ++i)
tmp006_poll_sensor(i);
}
DECLARE_HOOK(HOOK_SECOND, tmp006_poll, HOOK_PRIO_TEMP_SENSOR);
/*****************************************************************************/
/* Interface to the rest of the EC */
/* This just returns Tdie */
static int tmp006_read_die_temp_k(const struct tmp006_data_t *tdata,
int *temp_ptr)
{
if (tdata->fail)
return EC_ERROR_UNKNOWN;
/* Tdie reg is signed 1/128 degrees C, resolution 1/32 degrees */
*temp_ptr = (int)tdata->t_raw0 / 128 + 273;
return EC_SUCCESS;
}
/*
* This uses Tdie and Vobj and a bunch of magic parameters to calulate the
* object temperature, Tobj.
*/
static int tmp006_read_object_temp_k(struct tmp006_data_t *tdata,
int *temp_ptr)
{
float tdie, vobj;
float tx, s, vos, vx, fv, tobj, t4;
float tdie_filtered, tdie_slope, tobj_filtered;
if (tdata->fail)
return EC_ERROR_UNKNOWN;
if (!tdata->s0)
return EC_ERROR_NOT_CALIBRATED;
/* Tdie reg is signed 1/128 degrees C, resolution 1/32 degrees
* We need degrees K */
tdie = (float)tdata->t_raw0 / 128.0f + 273.15f;
/* Vobj reg is signed int, LSB = 156.25 nV
* We need volts */
vobj = (float)tdata->v_raw / 156.25f * 1e-9f;
/* Alg1: apply filter to tdie. If tdie1 is 0K, initialize it. */
if (tdata->tdie1 == 0.0f)
tdata->tdie1 = tdie;
tdie_filtered = tdata->d0 * tdie + tdata->d1 * tdata->tdie1;
tdie_slope = tdie - tdie_filtered;
/* Remember the current Tdie for next time */
tdata->tdie1 = tdie;
/* Calculate according to TMP006 users guide. */
tx = tdie - 298.15f;
/* s is the sensitivity */
s = tdata->s0 * (1.0f + tdata->a1 * tx + tdata->a2 * tx * tx);
/* vos is the offset voltage */
vos = tdata->b0 + tdata->b1 * tx + tdata->b2 * tx * tx;
/* Alg1: use Tdie FIR here */
vx = vobj - vos + tdie_slope * tdata->ds;
/* fv is Seebeck coefficient f(vobj) */
fv = vx + tdata->c2 * vx * vx;
t4 = tdie * tdie * tdie * tdie + fv / s;
tobj = sqrtf(sqrtf(t4));
/* Alg1: apply another filter on the calculated tobj. */
if (tdata->tobj1 == 0.0f)
tdata->tobj1 = tobj;
tobj_filtered = tdata->e0 * tobj + tdata->e1 * tdata->tobj1;
tdata->tobj1 = tobj;
/* return integer degrees K */
*temp_ptr = tobj_filtered;
return EC_SUCCESS;
}
int tmp006_get_val(int idx, int *temp_ptr)
{
/*
* Note: idx is a thermal sensor index, where the top N-1 bits are the
* TMP006 index and the bottom bit is (0=die, 1=remote).
*/
int tidx = idx >> 1;
struct tmp006_data_t *tdata = tmp006_data + tidx;
if (tdata->fail & FAIL_POWER) {
/*
* Sensor isn't powered, or hasn't successfully provided data
* since being powered. Keep reporting not-powered until
* we get good data (which will clear FAIL_POWER) or there is
* an I2C error.
*/
return (tdata->fail & FAIL_I2C) ? EC_ERROR_UNKNOWN :
EC_ERROR_NOT_POWERED;
}
/* Check the low bit to determine which temperature to read. */
if ((idx & 0x1) == 0)
return tmp006_read_die_temp_k(tdata, temp_ptr);
else
return tmp006_read_object_temp_k(tdata, temp_ptr);
}
/*****************************************************************************/
/* Host commands */
int tmp006_get_calibration(struct host_cmd_handler_args *args)
{
const struct ec_params_tmp006_get_calibration *p = args->params;
struct ec_response_tmp006_get_calibration_v1 *r1 = args->response;
const struct tmp006_data_t *tdata;
if (p->index >= TMP006_COUNT)
return EC_RES_INVALID_PARAM;
tdata = tmp006_data + p->index;
r1->algorithm = ALGORITHM_NUM;
r1->num_params = ALGORITHM_PARAMS;
r1->val[0] = tdata->s0;
r1->val[1] = tdata->a1;
r1->val[2] = tdata->a2;
r1->val[3] = tdata->b0;
r1->val[4] = tdata->b1;
r1->val[5] = tdata->b2;
r1->val[6] = tdata->c2;
r1->val[7] = tdata->d0;
r1->val[8] = tdata->d1;
r1->val[9] = tdata->ds;
r1->val[10] = tdata->e0;
r1->val[11] = tdata->e1;
args->response_size = sizeof(*r1) +
r1->num_params * sizeof(r1->val[0]);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_TMP006_GET_CALIBRATION,
tmp006_get_calibration,
EC_VER_MASK(1));
int tmp006_set_calibration(struct host_cmd_handler_args *args)
{
const struct ec_params_tmp006_set_calibration_v1 *p1 = args->params;
struct tmp006_data_t *tdata;
if (p1->index >= TMP006_COUNT)
return EC_RES_INVALID_PARAM;
/* We only have one algorithm today */
if (p1->algorithm != ALGORITHM_NUM ||
p1->num_params != ALGORITHM_PARAMS)
return EC_RES_INVALID_PARAM;
tdata = tmp006_data + p1->index;
tdata->s0 = p1->val[0];
tdata->a1 = p1->val[1];
tdata->a2 = p1->val[2];
tdata->b0 = p1->val[3];
tdata->b1 = p1->val[4];
tdata->b2 = p1->val[5];
tdata->c2 = p1->val[6];
tdata->d0 = p1->val[7];
tdata->d1 = p1->val[8];
tdata->ds = p1->val[9];
tdata->e0 = p1->val[10];
tdata->e1 = p1->val[11];
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_TMP006_SET_CALIBRATION,
tmp006_set_calibration,
EC_VER_MASK(1));
int tmp006_get_raw(struct host_cmd_handler_args *args)
{
const struct ec_params_tmp006_get_raw *p = args->params;
struct ec_response_tmp006_get_raw *r = args->response;
const struct tmp006_data_t *tdata;
if (p->index >= TMP006_COUNT)
return EC_RES_INVALID_PARAM;
tdata = tmp006_data + p->index;
/* Vobj reg is signed int, LSB = 156.25 nV
* response units are nV */
r->v = ((int)tdata->v_raw * 15625) / 100;
/* Tdie reg is signed 1/128 degrees C, resolution 1/32 degrees
* response units are 1/100 degrees K */
r->t = ((int)tdata->t_raw0 * 100) / 128 + 27315;
args->response_size = sizeof(*r);
return EC_RES_SUCCESS;
}
DECLARE_HOST_COMMAND(EC_CMD_TMP006_GET_RAW,
tmp006_get_raw,
EC_VER_MASK(0));
/*****************************************************************************/
/* Console commands */
#ifdef CONFIG_CMD_TEMP_SENSOR
/**
* Print temperature info for a sensor; used by console command.
*/
static int tmp006_print(int idx)
{
int vraw, v;
int traw, t;
int rv;
int d;
int addr = tmp006_sensors[idx].addr;
ccprintf("Debug data from %s:\n", tmp006_sensors[idx].name);
if (!tmp006_has_power(idx)) {
ccputs("Sensor powered off.\n");
return EC_ERROR_UNKNOWN;
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_MANUFACTURER_ID, &d);
if (rv)
return rv;
ccprintf(" Manufacturer ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_DEVICE_ID, &d);
ccprintf(" Device ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_CONFIG, &d);
ccprintf(" Config: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_VOBJ, &vraw);
v = ((int)vraw * 15625) / 100;
ccprintf(" Voltage: 0x%04x = %d nV\n", vraw, v);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr),
TMP006_REG_TDIE, &traw);
t = (int)traw;
ccprintf(" Temperature: 0x%04x = %d.%02d C\n",
traw, t / 128, t > 0 ? t % 128 : 128 - (t % 128));
return EC_SUCCESS;
}
static int command_sensor_info(int argc, char **argv)
{
int i;
int rv, rv1;
int a = 0, b = TMP006_COUNT;
if (argc > 1) {
char *e = 0;
i = strtoi(argv[1], &e, 0);
if (*e || i < 0 || i >= TMP006_COUNT)
return EC_ERROR_PARAM1;
a = i;
b = i + 1;
}
rv1 = EC_SUCCESS;
for (i = a; i < b; i++) {
rv = tmp006_print(i);
if (rv != EC_SUCCESS)
rv1 = rv;
cflush();
}
return rv1;
}
DECLARE_CONSOLE_COMMAND(tmp006, command_sensor_info,
"[ <index> ]",
"Print TMP006 sensors");
#endif
/* Disable the t6cal command until/unless we have FP support in printf */
#if 0
static int command_t6cal(int argc, char **argv)
{
struct tmp006_data_t *tdata;
char *e;
int v;
int i;
if (argc < 2) {
ccprintf("# Name S0 b0"
" b1 b2\n");
for (i = 0; i < TMP006_COUNT; i++) {
tdata = tmp006_data + i;
ccprintf("%d %-11s"
"%7de-17 %7de-8 %7de-10 %7de-12\n",
i, tmp006_sensors[i].name,
(int)(tdata->s0 * 1e17f),
(int)(tdata->b0 * 1e8f),
(int)(tdata->b1 * 1e10f),
(int)(tdata->b2 * 1e12f));
}
return EC_SUCCESS;
}
if (argc != 4)
return EC_ERROR_PARAM_COUNT;
i = strtoi(argv[1], &e, 0);
if (*e || i < 0 || i >= TMP006_COUNT)
return EC_ERROR_PARAM1;
tdata = tmp006_data + i;
v = strtoi(argv[3], &e, 0);
if (*e)
return EC_ERROR_PARAM3;
if (!strcasecmp(argv[2], "s0"))
tdata->s0 = (float)v * 1e-17f;
else if (!strcasecmp(argv[2], "b0"))
tdata->b0 = (float)v * 1e-8f;
else if (!strcasecmp(argv[2], "b1"))
tdata->b1 = (float)v * 1e-10f;
else if (!strcasecmp(argv[2], "b2"))
tdata->b2 = (float)v * 1e-12f;
else
return EC_ERROR_PARAM2;
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(t6cal, command_t6cal,
"[<index> <coeff_name> <radix>]",
"Set/print TMP006 calibration");
#endif