mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-08 16:41:55 +00:00
I need to clean up the console commands and provide the same functionality via ectool, but this is a good starting point. BUG=chrome-os-partner:7839 TEST=manual Power up the CPU. The lights should blink. Change-Id: Ic05a171d2b647551f1cfc7d6b2fd101088cac137 Signed-off-by: Bill Richardson <wfrichar@chromium.org>
602 lines
15 KiB
C
602 lines
15 KiB
C
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* LED controls.
|
|
*/
|
|
|
|
#include "board.h"
|
|
#include "console.h"
|
|
#include "gpio.h"
|
|
#include "host_command.h"
|
|
#include "i2c.h"
|
|
#include "lightbar.h"
|
|
#include "task.h"
|
|
#include "timer.h"
|
|
#include "uart.h"
|
|
#include "util.h"
|
|
|
|
/******************************************************************************/
|
|
/* How to talk to the controller */
|
|
/******************************************************************************/
|
|
|
|
/* Since there's absolutely nothing we can do about it if an I2C access
|
|
* isn't working, we're completely ignoring any failures. */
|
|
|
|
static const uint8_t i2c_addr[] = { 0x54, 0x56 };
|
|
|
|
static inline void controller_write(int ctrl_num, uint8_t reg, uint8_t val)
|
|
{
|
|
i2c_write8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, val);
|
|
}
|
|
|
|
static inline uint8_t controller_read(int ctrl_num, uint8_t reg)
|
|
{
|
|
int val = 0;
|
|
i2c_read8(I2C_PORT_LIGHTBAR, i2c_addr[ctrl_num], reg, &val);
|
|
return val;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Controller details. We have an ADP8861 and and ADP8863, but we can treat
|
|
* them identically for our purposes */
|
|
/******************************************************************************/
|
|
|
|
/* We need to limit the total current per ISC to no more than 20mA (5mA per
|
|
* color LED, but we have four LEDs in parallel on each ISC). Any more than
|
|
* that runs the risk of damaging the LED component. A value of 0x67 is as high
|
|
* as we want (assuming Square Law), but the blue LED is the least bright, so
|
|
* I've lowered the other colors until they all appear approximately equal
|
|
* brightness when full on. That's still pretty bright and a lot of current
|
|
* drain on the battery, so we'll probably rarely go that high. */
|
|
#define MAX_RED 0x5c
|
|
#define MAX_GREEN 0x38
|
|
#define MAX_BLUE 0x67
|
|
|
|
/* How many LEDs do we have? Right now, only four. */
|
|
#define NUM_LEDS 4
|
|
|
|
/* How we'd like to see the driver chips initialized. The controllers have some
|
|
* auto-cycling capability, but it's not much use for our purposes. For now,
|
|
* we'll just control all color changes actively. */
|
|
struct initdata_s {
|
|
uint8_t reg;
|
|
uint8_t val;
|
|
};
|
|
|
|
static const struct initdata_s init_vals[] = {
|
|
{0x04, 0x00}, /* no backlight function */
|
|
{0x05, 0x3f}, /* xRGBRGB per chip */
|
|
{0x0f, 0x01}, /* square law looks better */
|
|
{0x10, 0x3f}, /* enable independent LEDs */
|
|
{0x11, 0x00}, /* no auto cycling */
|
|
{0x12, 0x00}, /* no auto cycling */
|
|
{0x13, 0x00}, /* instant fade in/out */
|
|
{0x14, 0x00}, /* not using LED 7 */
|
|
{0x15, 0x00}, /* current for LED 6 (blue) */
|
|
{0x16, 0x00}, /* current for LED 5 (red) */
|
|
{0x17, 0x00}, /* current for LED 4 (green) */
|
|
{0x18, 0x00}, /* current for LED 3 (blue) */
|
|
{0x19, 0x00}, /* current for LED 2 (red) */
|
|
{0x1a, 0x00}, /* current for LED 1 (green) */
|
|
};
|
|
|
|
static void set_from_array(const struct initdata_s *data, int count)
|
|
{
|
|
int i;
|
|
for (i = 0; i < count; i++) {
|
|
controller_write(0, data[i].reg, data[i].val);
|
|
controller_write(1, data[i].reg, data[i].val);
|
|
}
|
|
}
|
|
|
|
static void lightbar_init_vals(void)
|
|
{
|
|
uart_printf("[%s()]\n", __func__);
|
|
set_from_array(init_vals, ARRAY_SIZE(init_vals));
|
|
}
|
|
|
|
/* Controller register lookup tables. */
|
|
static const uint8_t led_to_ctrl[] = { 0, 0, 1, 1 };
|
|
static const uint8_t led_to_isc[] = { 0x15, 0x18, 0x15, 0x18 };
|
|
|
|
/* Scale 0-255 into max value */
|
|
static inline uint8_t scale_abs(int val, int max)
|
|
{
|
|
return (val * max)/255 + max/256;
|
|
}
|
|
|
|
/* It will often be simpler to provide an overall brightness control. */
|
|
static int brightness = 255;
|
|
|
|
/* So that we can make brightness changes happen instantly, we need to track
|
|
* the current values. The values in the controllers aren't very helpful. */
|
|
static uint8_t current[NUM_LEDS][3];
|
|
|
|
/* Scale 0-255 by brightness */
|
|
static inline uint8_t scale(int val, int max)
|
|
{
|
|
return scale_abs((val * brightness)/255, max);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Basic LED control functions. */
|
|
/******************************************************************************/
|
|
|
|
static void lightbar_off(void)
|
|
{
|
|
uart_printf("[%s()]\n", __func__);
|
|
/* Just go into standby mode. No register values should change. */
|
|
controller_write(0, 0x01, 0x00);
|
|
controller_write(1, 0x01, 0x00);
|
|
}
|
|
|
|
static void lightbar_on(void)
|
|
{
|
|
uart_printf("[%s()]\n", __func__);
|
|
/* Come out of standby mode. */
|
|
controller_write(0, 0x01, 0x20);
|
|
controller_write(1, 0x01, 0x20);
|
|
}
|
|
|
|
/* LEDs are numbered 0-3, RGB values should be in 0-255. */
|
|
static void lightbar_setcolor(int led, int red, int green, int blue)
|
|
{
|
|
int ctrl, bank;
|
|
current[led][0] = red;
|
|
current[led][1] = green;
|
|
current[led][2] = blue;
|
|
ctrl = led_to_ctrl[led];
|
|
bank = led_to_isc[led];
|
|
controller_write(ctrl, bank, scale(blue, MAX_BLUE));
|
|
controller_write(ctrl, bank+1, scale(red, MAX_RED));
|
|
controller_write(ctrl, bank+2, scale(green, MAX_GREEN));
|
|
}
|
|
|
|
static inline void lightbar_brightness(int newval)
|
|
{
|
|
int i;
|
|
uart_printf("%s[(%d)]\n", __func__, newval);
|
|
brightness = newval;
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lightbar_setcolor(i, current[i][0],
|
|
current[i][1], current[i][2]);
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
|
|
/* Major colors */
|
|
static const struct {
|
|
uint8_t r, g, b;
|
|
} testy[] = {
|
|
{0xff, 0x00, 0x00},
|
|
{0x00, 0xff, 0x00},
|
|
{0x00, 0x00, 0xff},
|
|
{0xff, 0xff, 0x00}, /* The first four are Google colors */
|
|
{0x00, 0xff, 0xff},
|
|
{0xff, 0x00, 0xff},
|
|
{0xff, 0xff, 0xff},
|
|
};
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Now for the pretty patterns */
|
|
/******************************************************************************/
|
|
|
|
#define WAIT_OR_RET(A) do { \
|
|
uint32_t msg = task_wait_event(A); \
|
|
if (!(msg & TASK_EVENT_TIMER)) \
|
|
return TASK_EVENT_CUSTOM(msg); } while (0)
|
|
|
|
/* CPU is off */
|
|
static uint32_t sequence_s5(void)
|
|
{
|
|
int i;
|
|
uart_printf("[%s()]\n", __func__);
|
|
|
|
/* For now, do something to indicate S5. We might see it. */
|
|
lightbar_on();
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lightbar_setcolor(i, 255, 0, 0);
|
|
|
|
/* The lightbar loses power in S5, so just wait forever. */
|
|
WAIT_OR_RET(-1);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is powering up. The lightbar loses power when the CPU is in S5, so this
|
|
* might not be useful. */
|
|
static uint32_t sequence_s5s3(void)
|
|
{
|
|
int i;
|
|
|
|
uart_printf("[%s()]\n", __func__);
|
|
/* The controllers need 100us after power is applied before they'll
|
|
* respond. */
|
|
usleep(100);
|
|
lightbar_init_vals();
|
|
|
|
/* For now, do something to indicate this transition.
|
|
* We might see it. */
|
|
lightbar_on();
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lightbar_setcolor(i, 255, 255, 255);
|
|
WAIT_OR_RET(500000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is fully on */
|
|
static uint32_t sequence_s0(void)
|
|
{
|
|
int l = 0;
|
|
int n = 0;
|
|
|
|
uart_printf("[%s()]\n", __func__);
|
|
lightbar_on();
|
|
|
|
while (1) {
|
|
l = l % NUM_LEDS;
|
|
n = n % 5;
|
|
if (n == 4)
|
|
lightbar_setcolor(l, 0, 0, 0);
|
|
else
|
|
lightbar_setcolor(l, testy[n].r,
|
|
testy[n].g, testy[n].b);
|
|
l++;
|
|
n++;
|
|
WAIT_OR_RET(50000);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is going to sleep */
|
|
static uint32_t sequence_s0s3(void)
|
|
{
|
|
uart_printf("[%s()]\n", __func__);
|
|
lightbar_on();
|
|
lightbar_setcolor(0, 0, 0, 255);
|
|
lightbar_setcolor(1, 255, 0, 0);
|
|
lightbar_setcolor(2, 255, 255, 0);
|
|
lightbar_setcolor(3, 0, 255, 0);
|
|
WAIT_OR_RET(200000);
|
|
lightbar_setcolor(0, 0, 0, 0);
|
|
WAIT_OR_RET(200000);
|
|
lightbar_setcolor(1, 0, 0, 0);
|
|
WAIT_OR_RET(200000);
|
|
lightbar_setcolor(2, 0, 0, 0);
|
|
WAIT_OR_RET(200000);
|
|
lightbar_setcolor(3, 0, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is sleeping */
|
|
static uint32_t sequence_s3(void)
|
|
{
|
|
int i = 0;
|
|
uart_printf("[%s()]\n", __func__);
|
|
lightbar_off();
|
|
lightbar_init_vals();
|
|
lightbar_setcolor(0, 0, 0, 0);
|
|
lightbar_setcolor(1, 0, 0, 0);
|
|
lightbar_setcolor(2, 0, 0, 0);
|
|
lightbar_setcolor(3, 0, 0, 0);
|
|
while (1) {
|
|
WAIT_OR_RET(3000000);
|
|
lightbar_on();
|
|
i = i % NUM_LEDS;
|
|
/* FIXME: indicate battery level? */
|
|
lightbar_setcolor(i, testy[i].r, testy[i].g, testy[i].b);
|
|
WAIT_OR_RET(100000);
|
|
lightbar_setcolor(i, 0, 0, 0);
|
|
i++;
|
|
lightbar_off();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* CPU is waking from sleep */
|
|
static uint32_t sequence_s3s0(void)
|
|
{
|
|
uart_printf("[%s()]\n", __func__);
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
lightbar_setcolor(0, 0, 0, 255);
|
|
WAIT_OR_RET(200000);
|
|
lightbar_setcolor(1, 255, 0, 0);
|
|
WAIT_OR_RET(200000);
|
|
lightbar_setcolor(2, 255, 255, 0);
|
|
WAIT_OR_RET(200000);
|
|
lightbar_setcolor(3, 0, 255, 0);
|
|
WAIT_OR_RET(200000);
|
|
return 0;
|
|
}
|
|
|
|
/* Sleep to off. */
|
|
static uint32_t sequence_s3s5(void)
|
|
{
|
|
int i;
|
|
|
|
uart_printf("[%s()]\n", __func__);
|
|
|
|
/* For now, do something to indicate this transition.
|
|
* We might see it. */
|
|
lightbar_on();
|
|
for (i = 0; i < NUM_LEDS; i++)
|
|
lightbar_setcolor(i, 0, 0, 255);
|
|
WAIT_OR_RET(500000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* FIXME: This can be removed. */
|
|
static uint32_t sequence_test(void)
|
|
{
|
|
int i, j, k, r, g, b;
|
|
int kmax = 254;
|
|
int kstep = 8;
|
|
|
|
uart_printf("[%s()]\n", __func__);
|
|
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
for (i = 0; i < ARRAY_SIZE(testy); i++) {
|
|
for (k = 0; k <= kmax; k += kstep) {
|
|
for (j = 0; j < NUM_LEDS; j++) {
|
|
r = testy[i].r ? k : 0;
|
|
g = testy[i].g ? k : 0;
|
|
b = testy[i].b ? k : 0;
|
|
lightbar_setcolor(j, r, g, b);
|
|
}
|
|
WAIT_OR_RET(10000);
|
|
}
|
|
for (k = kmax; k >= 0; k -= kstep) {
|
|
for (j = 0; j < NUM_LEDS; j++) {
|
|
r = testy[i].r ? k : 0;
|
|
g = testy[i].g ? k : 0;
|
|
b = testy[i].b ? k : 0;
|
|
lightbar_setcolor(j, r, g, b);
|
|
}
|
|
WAIT_OR_RET(10000);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This uses the auto-cycling features of the controllers to make a semi-random
|
|
* pattern of slowly fading colors. This is interesting only because it doesn't
|
|
* require any effort from the EC. */
|
|
static uint32_t sequence_pulse(void)
|
|
{
|
|
uint32_t msg;
|
|
int r, g, b;
|
|
|
|
uart_printf("[%s()]\n", __func__);
|
|
|
|
r = scale(255, MAX_RED);
|
|
g = scale(255, MAX_BLUE);
|
|
b = scale(255, MAX_GREEN);
|
|
|
|
lightbar_init_vals();
|
|
lightbar_on();
|
|
|
|
controller_write(0, 0x11, 0xce);
|
|
controller_write(0, 0x12, 0x67);
|
|
controller_write(0, 0x13, 0xef);
|
|
|
|
controller_write(0, 0x15, b);
|
|
controller_write(0, 0x16, r);
|
|
controller_write(0, 0x17, g);
|
|
controller_write(0, 0x18, b);
|
|
controller_write(0, 0x19, r);
|
|
controller_write(0, 0x1a, g);
|
|
|
|
controller_write(1, 0x11, 0xce);
|
|
controller_write(1, 0x12, 0x67);
|
|
controller_write(1, 0x13, 0xcd);
|
|
|
|
controller_write(1, 0x15, b);
|
|
controller_write(1, 0x16, r);
|
|
controller_write(1, 0x17, g);
|
|
controller_write(1, 0x18, b);
|
|
controller_write(1, 0x19, r);
|
|
controller_write(1, 0x1a, g);
|
|
|
|
/* Not using WAIT_OR_RET() here, because we want to clean up when we're
|
|
* done. The only way out is to get a message. */
|
|
msg = task_wait_event(-1);
|
|
lightbar_init_vals();
|
|
return TASK_EVENT_CUSTOM(msg);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/* Lightbar task. It just cycles between various pretty patterns. */
|
|
/****************************************************************************/
|
|
|
|
/* IMPORTANT: The order here must match the enum lightbar_sequence values. */
|
|
static uint32_t (*sequence[])(void) = {
|
|
0,
|
|
sequence_s5,
|
|
sequence_s3,
|
|
sequence_s0,
|
|
sequence_s5s3,
|
|
sequence_s3s0,
|
|
sequence_s0s3,
|
|
sequence_s3s5,
|
|
sequence_test,
|
|
sequence_pulse,
|
|
};
|
|
|
|
void lightbar_task(void)
|
|
{
|
|
uint32_t msg;
|
|
enum lightbar_sequence state, previous_state;
|
|
|
|
/* Keep the controllers out of reset. The reset pullup uses more power
|
|
* than leaving them in standby. */
|
|
gpio_set_level(GPIO_LIGHTBAR_RESETn, 1);
|
|
usleep(100);
|
|
|
|
lightbar_init_vals();
|
|
|
|
/* FIXME: What to do first? */
|
|
state = LIGHTBAR_S5;
|
|
previous_state = state;
|
|
|
|
while (1) {
|
|
msg = sequence[state]();
|
|
uart_printf("[%s(%d)]\n", __func__, msg);
|
|
msg = TASK_EVENT_CUSTOM(msg);
|
|
if (msg && msg < LIGHTBAR_NUM_SEQUENCES) {
|
|
previous_state = state;
|
|
state = TASK_EVENT_CUSTOM(msg);
|
|
} else {
|
|
switch (state) {
|
|
case LIGHTBAR_S5S3:
|
|
state = LIGHTBAR_S3;
|
|
break;
|
|
case LIGHTBAR_S3S0:
|
|
state = LIGHTBAR_S0;
|
|
break;
|
|
case LIGHTBAR_S0S3:
|
|
state = LIGHTBAR_S3;
|
|
break;
|
|
case LIGHTBAR_S3S5:
|
|
state = LIGHTBAR_S5;
|
|
break;
|
|
case LIGHTBAR_TEST:
|
|
state = previous_state;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Request a preset sequence from the lightbar task. */
|
|
void lightbar_sequence(enum lightbar_sequence num)
|
|
{
|
|
uart_printf("[%s(%d)]\n", __func__, num);
|
|
if (num && num < LIGHTBAR_NUM_SEQUENCES)
|
|
task_set_event(TASK_ID_LIGHTBAR,
|
|
TASK_EVENT_WAKE | TASK_EVENT_CUSTOM(num), 0);
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
/* Host commands via LPC bus */
|
|
/****************************************************************************/
|
|
|
|
/* FIXME(wfrichar): provide the same functions as the EC console */
|
|
|
|
static enum lpc_status lpc_cmd_reset(uint8_t *data)
|
|
{
|
|
lightbar_init_vals();
|
|
return EC_LPC_RESULT_SUCCESS;
|
|
}
|
|
DECLARE_HOST_COMMAND(EC_LPC_COMMAND_LIGHTBAR_RESET, lpc_cmd_reset);
|
|
|
|
static enum lpc_status lpc_cmd_test(uint8_t *data)
|
|
{
|
|
lightbar_sequence(LIGHTBAR_TEST);
|
|
return EC_LPC_RESULT_SUCCESS;
|
|
}
|
|
DECLARE_HOST_COMMAND(EC_LPC_COMMAND_LIGHTBAR_TEST, lpc_cmd_test);
|
|
|
|
|
|
/****************************************************************************/
|
|
/* EC console commands */
|
|
/****************************************************************************/
|
|
|
|
static int help(const char *cmd)
|
|
{
|
|
uart_printf("Usage: %s\n", cmd);
|
|
uart_printf(" %s reset\n", cmd);
|
|
uart_printf(" %s off\n", cmd);
|
|
uart_printf(" %s on\n", cmd);
|
|
uart_printf(" %s msg NUM\n", cmd);
|
|
uart_printf(" %s brightness NUM\n", cmd);
|
|
uart_printf(" %s CTRL REG VAL\n", cmd);
|
|
uart_printf(" %s LED RED GREEN BLUE\n", cmd);
|
|
return EC_ERROR_UNKNOWN;
|
|
}
|
|
|
|
static void dump_regs(void)
|
|
{
|
|
int reg, d1, d2, i;
|
|
int reglist[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a };
|
|
for (i = 0; i < ARRAY_SIZE(reglist); i++) {
|
|
reg = reglist[i];
|
|
d1 = controller_read(0, reg);
|
|
d2 = controller_read(1, reg);
|
|
uart_printf(" %02x %02x %02x\n", reg, d1, d2);
|
|
}
|
|
}
|
|
|
|
static int command_lightbar(int argc, char **argv)
|
|
{
|
|
if (1 == argc) { /* no args = dump 'em all */
|
|
dump_regs();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "init")) {
|
|
lightbar_init_vals();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "off")) {
|
|
lightbar_off();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "on")) {
|
|
lightbar_on();
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "brightness")) {
|
|
char *e;
|
|
int num = strtoi(argv[2], &e, 16);
|
|
lightbar_brightness(num);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (!strcasecmp(argv[1], "msg")) {
|
|
char *e;
|
|
int num = strtoi(argv[2], &e, 16);
|
|
lightbar_sequence(num);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (4 == argc) {
|
|
char *e;
|
|
int ctrl = strtoi(argv[1], &e, 16);
|
|
int reg = strtoi(argv[2], &e, 16);
|
|
int val = strtoi(argv[3], &e, 16);
|
|
controller_write(ctrl, reg, val);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
if (5 == argc) {
|
|
char *e;
|
|
int led = strtoi(argv[1], &e, 16);
|
|
int red = strtoi(argv[2], &e, 16);
|
|
int green = strtoi(argv[3], &e, 16);
|
|
int blue = strtoi(argv[4], &e, 16);
|
|
lightbar_setcolor(led, red, green, blue);
|
|
return EC_SUCCESS;
|
|
}
|
|
|
|
return help(argv[0]);
|
|
}
|
|
DECLARE_CONSOLE_COMMAND(lightbar, command_lightbar);
|