mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-12-15 20:37:33 +00:00
This fixes a number of bugs, adds a bunch of commands, and essentially makes cgpt ready to use as a replacement for gpt. Still to do is to add commands and options that will let it generated intentionally bad partitions, for use in testing. Review URL: http://codereview.chromium.org/2719008
727 lines
22 KiB
C
727 lines
22 KiB
C
/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Utility for ChromeOS-specific GPT partitions, Please see corresponding .c
|
|
* files for more details.
|
|
*/
|
|
|
|
#include "cgpt.h"
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <getopt.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <assert.h>
|
|
#include <stdarg.h>
|
|
|
|
#include "cgptlib_internal.h"
|
|
#include "crc32.h"
|
|
|
|
|
|
void Error(const char *format, ...) {
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
fprintf(stderr, "ERROR: %s %s: ", progname, command);
|
|
vfprintf(stderr, format, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
|
|
int CheckValid(const struct drive *drive) {
|
|
if ((drive->gpt.valid_headers != MASK_BOTH) ||
|
|
(drive->gpt.valid_entries != MASK_BOTH)) {
|
|
fprintf(stderr, "\nWARNING: one of the GPT header/entries is invalid, "
|
|
"please run '%s repair'\n", progname);
|
|
return CGPT_FAILED;
|
|
}
|
|
return CGPT_OK;
|
|
}
|
|
|
|
/* Loads sectors from 'fd'.
|
|
* *buf is pointed to an allocated memory when returned, and should be
|
|
* freed by cgpt_close().
|
|
*
|
|
* fd -- file descriptot.
|
|
* buf -- pointer to buffer pointer
|
|
* sector -- offset of starting sector (in sectors)
|
|
* sector_bytes -- bytes per sector
|
|
* sector_count -- number of sectors to load
|
|
*
|
|
* Returns CGPT_OK for successful. Aborts if any error occurs.
|
|
*/
|
|
static int Load(const int fd, uint8_t **buf,
|
|
const uint64_t sector,
|
|
const uint64_t sector_bytes,
|
|
const uint64_t sector_count) {
|
|
int count; /* byte count to read */
|
|
int nread;
|
|
|
|
assert(buf);
|
|
count = sector_bytes * sector_count;
|
|
*buf = malloc(count);
|
|
assert(*buf);
|
|
|
|
if (-1 == lseek(fd, sector * sector_bytes, SEEK_SET))
|
|
goto error_free;
|
|
|
|
nread = read(fd, *buf, count);
|
|
if (nread < count)
|
|
goto error_free;
|
|
|
|
return CGPT_OK;
|
|
|
|
error_free:
|
|
free(*buf);
|
|
*buf = 0;
|
|
return CGPT_FAILED;
|
|
}
|
|
|
|
|
|
int ReadPMBR(struct drive *drive) {
|
|
if (-1 == lseek(drive->fd, 0, SEEK_SET))
|
|
return CGPT_FAILED;
|
|
|
|
int nread = read(drive->fd, &drive->pmbr, sizeof(struct pmbr));
|
|
if (nread != sizeof(struct pmbr))
|
|
return CGPT_FAILED;
|
|
|
|
return CGPT_OK;
|
|
}
|
|
|
|
int WritePMBR(struct drive *drive) {
|
|
if (-1 == lseek(drive->fd, 0, SEEK_SET))
|
|
return CGPT_FAILED;
|
|
|
|
int nwrote = write(drive->fd, &drive->pmbr, sizeof(struct pmbr));
|
|
if (nwrote != sizeof(struct pmbr))
|
|
return CGPT_FAILED;
|
|
|
|
return CGPT_OK;
|
|
}
|
|
|
|
/* Saves sectors to 'fd'.
|
|
*
|
|
* fd -- file descriptot.
|
|
* buf -- pointer to buffer
|
|
* sector -- starting sector offset
|
|
* sector_bytes -- bytes per sector
|
|
* sector_count -- number of sector to save
|
|
*
|
|
* Returns CGPT_OK for successful, CGPT_FAILED for failed.
|
|
*/
|
|
static int Save(const int fd, const uint8_t *buf,
|
|
const uint64_t sector,
|
|
const uint64_t sector_bytes,
|
|
const uint64_t sector_count) {
|
|
int count; /* byte count to write */
|
|
int nwrote;
|
|
|
|
assert(buf);
|
|
count = sector_bytes * sector_count;
|
|
|
|
if (-1 == lseek(fd, sector * sector_bytes, SEEK_SET))
|
|
return CGPT_FAILED;
|
|
|
|
nwrote = write(fd, buf, count);
|
|
if (nwrote < count)
|
|
return CGPT_FAILED;
|
|
|
|
return CGPT_OK;
|
|
}
|
|
|
|
|
|
// Opens a block device or file, loads raw GPT data from it.
|
|
//
|
|
// Returns CGPT_FAILED if any error happens.
|
|
// Returns CGPT_OK if success and information are stored in 'drive'. */
|
|
int DriveOpen(const char *drive_path, struct drive *drive) {
|
|
struct stat stat;
|
|
|
|
assert(drive_path);
|
|
assert(drive);
|
|
|
|
// Clear struct for proper error handling.
|
|
memset(drive, 0, sizeof(struct drive));
|
|
|
|
drive->fd = open(drive_path, O_RDWR | O_LARGEFILE);
|
|
if (drive->fd == -1) {
|
|
Error("Can't open %s: %s\n", drive_path, strerror(errno));
|
|
return CGPT_FAILED;
|
|
}
|
|
|
|
if (fstat(drive->fd, &stat) == -1) {
|
|
goto error_close;
|
|
}
|
|
if ((stat.st_mode & S_IFMT) != S_IFREG) {
|
|
if (ioctl(drive->fd, BLKGETSIZE64, &drive->size) < 0) {
|
|
Error("Can't read drive size from %s: %s\n", drive_path, strerror(errno));
|
|
goto error_close;
|
|
}
|
|
if (ioctl(drive->fd, BLKSSZGET, &drive->gpt.sector_bytes) < 0) {
|
|
Error("Can't read sector size from %s: %s\n",
|
|
drive_path, strerror(errno));
|
|
goto error_close;
|
|
}
|
|
} else {
|
|
drive->gpt.sector_bytes = 512; /* bytes */
|
|
drive->size = stat.st_size;
|
|
}
|
|
if (drive->size % drive->gpt.sector_bytes) {
|
|
Error("Media size (%llu) is not a multiple of sector size(%d)\n",
|
|
(long long unsigned int)drive->size, drive->gpt.sector_bytes);
|
|
goto error_close;
|
|
}
|
|
drive->gpt.drive_sectors = drive->size / drive->gpt.sector_bytes;
|
|
|
|
// Read the data.
|
|
if (CGPT_OK != Load(drive->fd, &drive->gpt.primary_header,
|
|
GPT_PMBR_SECTOR,
|
|
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
|
|
goto error_close;
|
|
}
|
|
if (CGPT_OK != Load(drive->fd, &drive->gpt.secondary_header,
|
|
drive->gpt.drive_sectors - GPT_PMBR_SECTOR,
|
|
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
|
|
goto error_close;
|
|
}
|
|
if (CGPT_OK != Load(drive->fd, &drive->gpt.primary_entries,
|
|
GPT_PMBR_SECTOR + GPT_HEADER_SECTOR,
|
|
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
|
|
goto error_close;
|
|
}
|
|
if (CGPT_OK != Load(drive->fd, &drive->gpt.secondary_entries,
|
|
drive->gpt.drive_sectors - GPT_HEADER_SECTOR
|
|
- GPT_ENTRIES_SECTORS,
|
|
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
|
|
goto error_close;
|
|
}
|
|
|
|
// We just load the data. Caller must validate it.
|
|
return CGPT_OK;
|
|
|
|
error_close:
|
|
(void) DriveClose(drive, 0);
|
|
return CGPT_FAILED;
|
|
}
|
|
|
|
|
|
int DriveClose(struct drive *drive, int update_as_needed) {
|
|
int errors = 0;
|
|
|
|
if (update_as_needed) {
|
|
if (drive->gpt.modified & GPT_MODIFIED_HEADER1) {
|
|
if (CGPT_OK != Save(drive->fd, drive->gpt.primary_header,
|
|
GPT_PMBR_SECTOR,
|
|
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
|
|
errors++;
|
|
Error("Cannot write primary header: %s\n", strerror(errno));
|
|
}
|
|
}
|
|
|
|
if (drive->gpt.modified & GPT_MODIFIED_HEADER2) {
|
|
if(CGPT_OK != Save(drive->fd, drive->gpt.secondary_header,
|
|
drive->gpt.drive_sectors - GPT_PMBR_SECTOR,
|
|
drive->gpt.sector_bytes, GPT_HEADER_SECTOR)) {
|
|
errors++;
|
|
Error("Cannot write secondary header: %s\n", strerror(errno));
|
|
}
|
|
}
|
|
if (drive->gpt.modified & GPT_MODIFIED_ENTRIES1) {
|
|
if (CGPT_OK != Save(drive->fd, drive->gpt.primary_entries,
|
|
GPT_PMBR_SECTOR + GPT_HEADER_SECTOR,
|
|
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
|
|
errors++;
|
|
Error("Cannot write primary entries: %s\n", strerror(errno));
|
|
}
|
|
}
|
|
if (drive->gpt.modified & GPT_MODIFIED_ENTRIES2) {
|
|
if (CGPT_OK != Save(drive->fd, drive->gpt.secondary_entries,
|
|
drive->gpt.drive_sectors - GPT_HEADER_SECTOR
|
|
- GPT_ENTRIES_SECTORS,
|
|
drive->gpt.sector_bytes, GPT_ENTRIES_SECTORS)) {
|
|
errors++;
|
|
Error("Cannot write secondary entries: %s\n", strerror(errno));
|
|
}
|
|
}
|
|
}
|
|
|
|
close(drive->fd);
|
|
|
|
if (drive->gpt.primary_header)
|
|
free(drive->gpt.primary_header);
|
|
drive->gpt.primary_header = 0;
|
|
if (drive->gpt.primary_entries)
|
|
free(drive->gpt.primary_entries);
|
|
drive->gpt.primary_entries = 0;
|
|
if (drive->gpt.secondary_header)
|
|
free(drive->gpt.secondary_header);
|
|
drive->gpt.secondary_header = 0;
|
|
if (drive->gpt.secondary_entries)
|
|
free(drive->gpt.secondary_entries);
|
|
drive->gpt.secondary_entries = 0;
|
|
|
|
return errors ? CGPT_FAILED : CGPT_OK;
|
|
}
|
|
|
|
|
|
|
|
/* GUID conversion functions. Accepted format:
|
|
*
|
|
* "C12A7328-F81F-11D2-BA4B-00A0C93EC93B"
|
|
*
|
|
* Returns CGPT_OK if parsing is successful; otherwise CGPT_FAILED.
|
|
*/
|
|
int StrToGuid(const char *str, Guid *guid) {
|
|
uint32_t time_low;
|
|
uint16_t time_mid;
|
|
uint16_t time_high_and_version;
|
|
unsigned int chunk[11];
|
|
|
|
if (11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
|
|
chunk+0,
|
|
chunk+1,
|
|
chunk+2,
|
|
chunk+3,
|
|
chunk+4,
|
|
chunk+5,
|
|
chunk+6,
|
|
chunk+7,
|
|
chunk+8,
|
|
chunk+9,
|
|
chunk+10)) {
|
|
printf("FAILED\n");
|
|
return CGPT_FAILED;
|
|
}
|
|
|
|
time_low = chunk[0] & 0xffffffff;
|
|
time_mid = chunk[1] & 0xffff;
|
|
time_high_and_version = chunk[2] & 0xffff;
|
|
|
|
guid->u.Uuid.time_low = htole32(time_low);
|
|
guid->u.Uuid.time_mid = htole16(time_mid);
|
|
guid->u.Uuid.time_high_and_version = htole16(time_high_and_version);
|
|
|
|
guid->u.Uuid.clock_seq_high_and_reserved = chunk[3] & 0xff;
|
|
guid->u.Uuid.clock_seq_low = chunk[4] & 0xff;
|
|
guid->u.Uuid.node[0] = chunk[5] & 0xff;
|
|
guid->u.Uuid.node[1] = chunk[6] & 0xff;
|
|
guid->u.Uuid.node[2] = chunk[7] & 0xff;
|
|
guid->u.Uuid.node[3] = chunk[8] & 0xff;
|
|
guid->u.Uuid.node[4] = chunk[9] & 0xff;
|
|
guid->u.Uuid.node[5] = chunk[10] & 0xff;
|
|
|
|
return CGPT_OK;
|
|
}
|
|
void GuidToStr(const Guid *guid, char *str) {
|
|
sprintf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
|
|
le32toh(guid->u.Uuid.time_low), le16toh(guid->u.Uuid.time_mid),
|
|
le16toh(guid->u.Uuid.time_high_and_version),
|
|
guid->u.Uuid.clock_seq_high_and_reserved, guid->u.Uuid.clock_seq_low,
|
|
guid->u.Uuid.node[0], guid->u.Uuid.node[1], guid->u.Uuid.node[2],
|
|
guid->u.Uuid.node[3], guid->u.Uuid.node[4], guid->u.Uuid.node[5]);
|
|
}
|
|
|
|
/* Convert UTF16 string to UTF8. Rewritten from gpt utility.
|
|
* Caller must prepare enough space for UTF8. The rough estimation is:
|
|
*
|
|
* utf8 length = bytecount(utf16) * 1.5
|
|
*/
|
|
#define SIZEOF_GPTENTRY_NAME 36 /* sizeof(GptEntry.name[]) */
|
|
void UTF16ToUTF8(const uint16_t *utf16, uint8_t *utf8)
|
|
{
|
|
size_t s8idx, s16idx, s16len;
|
|
uint32_t utfchar;
|
|
unsigned int next_utf16;
|
|
|
|
for (s16len = 0; s16len < SIZEOF_GPTENTRY_NAME && utf16[s16len]; ++s16len);
|
|
|
|
*utf8 = s8idx = s16idx = 0;
|
|
while (s16idx < s16len) {
|
|
utfchar = le16toh(utf16[s16idx++]);
|
|
if ((utfchar & 0xf800) == 0xd800) {
|
|
next_utf16 = le16toh(utf16[s16idx]);
|
|
if ((utfchar & 0x400) != 0 || (next_utf16 & 0xfc00) != 0xdc00)
|
|
utfchar = 0xfffd;
|
|
else
|
|
s16idx++;
|
|
}
|
|
if (utfchar < 0x80) {
|
|
utf8[s8idx++] = utfchar;
|
|
} else if (utfchar < 0x800) {
|
|
utf8[s8idx++] = 0xc0 | (utfchar >> 6);
|
|
utf8[s8idx++] = 0x80 | (utfchar & 0x3f);
|
|
} else if (utfchar < 0x10000) {
|
|
utf8[s8idx++] = 0xe0 | (utfchar >> 12);
|
|
utf8[s8idx++] = 0x80 | ((utfchar >> 6) & 0x3f);
|
|
utf8[s8idx++] = 0x80 | (utfchar & 0x3f);
|
|
} else if (utfchar < 0x200000) {
|
|
utf8[s8idx++] = 0xf0 | (utfchar >> 18);
|
|
utf8[s8idx++] = 0x80 | ((utfchar >> 12) & 0x3f);
|
|
utf8[s8idx++] = 0x80 | ((utfchar >> 6) & 0x3f);
|
|
utf8[s8idx++] = 0x80 | (utfchar & 0x3f);
|
|
}
|
|
}
|
|
utf8[s8idx++] = 0;
|
|
}
|
|
|
|
/* Convert UTF8 string to UTF16. Rewritten from gpt utility.
|
|
* Caller must prepare enough space for UTF16. The conservative estimation is:
|
|
*
|
|
* utf16 bytecount = bytecount(utf8) / 3 * 4
|
|
*/
|
|
void UTF8ToUTF16(const uint8_t *utf8, uint16_t *utf16)
|
|
{
|
|
size_t s16idx, s8idx, s8len;
|
|
uint32_t utfchar;
|
|
unsigned int c, utfbytes;
|
|
|
|
for (s8len = 0; utf8[s8len]; ++s8len);
|
|
|
|
s8idx = s16idx = 0;
|
|
utfbytes = 0;
|
|
do {
|
|
c = utf8[s8idx++];
|
|
if ((c & 0xc0) != 0x80) {
|
|
/* Initial characters. */
|
|
if (utfbytes != 0) {
|
|
/* Incomplete encoding. */
|
|
utf16[s16idx++] = 0xfffd;
|
|
}
|
|
if ((c & 0xf8) == 0xf0) {
|
|
utfchar = c & 0x07;
|
|
utfbytes = 3;
|
|
} else if ((c & 0xf0) == 0xe0) {
|
|
utfchar = c & 0x0f;
|
|
utfbytes = 2;
|
|
} else if ((c & 0xe0) == 0xc0) {
|
|
utfchar = c & 0x1f;
|
|
utfbytes = 1;
|
|
} else {
|
|
utfchar = c & 0x7f;
|
|
utfbytes = 0;
|
|
}
|
|
} else {
|
|
/* Followup characters. */
|
|
if (utfbytes > 0) {
|
|
utfchar = (utfchar << 6) + (c & 0x3f);
|
|
utfbytes--;
|
|
} else if (utfbytes == 0)
|
|
utfbytes = -1;
|
|
utfchar = 0xfffd;
|
|
}
|
|
if (utfbytes == 0) {
|
|
if (utfchar >= 0x10000) {
|
|
utf16[s16idx++] = htole16(0xd800 | ((utfchar>>10)-0x40));
|
|
if (s16idx >= SIZEOF_GPTENTRY_NAME) break;
|
|
utf16[s16idx++] = htole16(0xdc00 | (utfchar & 0x3ff));
|
|
} else {
|
|
utf16[s16idx++] = htole16(utfchar);
|
|
}
|
|
}
|
|
} while (c != 0 && s16idx < SIZEOF_GPTENTRY_NAME);
|
|
if (s16idx < SIZEOF_GPTENTRY_NAME)
|
|
utf16[s16idx++] = 0;
|
|
}
|
|
|
|
struct {
|
|
Guid type;
|
|
char *name;
|
|
char *description;
|
|
} supported_types[] = {
|
|
{GPT_ENT_TYPE_CHROMEOS_KERNEL, "kernel", "ChromeOS kernel"},
|
|
{GPT_ENT_TYPE_CHROMEOS_ROOTFS, "rootfs", "ChromeOS rootfs"},
|
|
{GPT_ENT_TYPE_LINUX_DATA, "data", "Linux data"},
|
|
{GPT_ENT_TYPE_CHROMEOS_RESERVED, "reserved", "ChromeOS reserved"},
|
|
{GPT_ENT_TYPE_EFI, "efi", "EFI System Partition"},
|
|
{GPT_ENT_TYPE_UNUSED, "unused", "Unused (nonexistent) partition"},
|
|
};
|
|
|
|
/* Resolves human-readable GPT type.
|
|
* Returns CGPT_OK if found.
|
|
* Returns CGPT_FAILED if no known type found. */
|
|
int ResolveType(const Guid *type, char *buf) {
|
|
int i;
|
|
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
|
|
if (!memcmp(type, &supported_types[i].type, sizeof(Guid))) {
|
|
strcpy(buf, supported_types[i].description);
|
|
return CGPT_OK;
|
|
}
|
|
}
|
|
return CGPT_FAILED;
|
|
}
|
|
|
|
int SupportedType(const char *name, Guid *type) {
|
|
int i;
|
|
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
|
|
if (!strcmp(name, supported_types[i].name)) {
|
|
memcpy(type, &supported_types[i].type, sizeof(Guid));
|
|
return CGPT_OK;
|
|
}
|
|
}
|
|
return CGPT_FAILED;
|
|
}
|
|
|
|
void PrintTypes(void) {
|
|
int i;
|
|
printf("The partition type may also be given as one of these aliases:\n\n");
|
|
for (i = 0; i < ARRAY_COUNT(supported_types); ++i) {
|
|
printf(" %-10s %s\n", supported_types[i].name,
|
|
supported_types[i].description);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
uint32_t GetNumberOfEntries(const GptData *gpt) {
|
|
GptHeader *header = 0;
|
|
if (gpt->valid_headers & MASK_PRIMARY)
|
|
header = (GptHeader*)gpt->primary_header;
|
|
else if (gpt->valid_headers & MASK_SECONDARY)
|
|
header = (GptHeader*)gpt->secondary_header;
|
|
else
|
|
return 0;
|
|
return header->number_of_entries;
|
|
}
|
|
|
|
static uint32_t GetSizeOfEntries(const GptData *gpt) {
|
|
GptHeader *header = 0;
|
|
if (gpt->valid_headers & MASK_PRIMARY)
|
|
header = (GptHeader*)gpt->primary_header;
|
|
else if (gpt->valid_headers & MASK_SECONDARY)
|
|
header = (GptHeader*)gpt->secondary_header;
|
|
else
|
|
return 0;
|
|
return header->number_of_entries;
|
|
}
|
|
|
|
GptEntry *GetEntry(GptData *gpt, int secondary, int entry_index) {
|
|
uint8_t *entries;
|
|
int stride = GetSizeOfEntries(gpt);
|
|
if (!stride)
|
|
return 0;
|
|
|
|
if (secondary == PRIMARY) {
|
|
entries = gpt->primary_entries;
|
|
} else {
|
|
entries = gpt->secondary_entries;
|
|
}
|
|
|
|
return (GptEntry*)(&entries[stride * entry_index]);
|
|
}
|
|
|
|
void SetPriority(GptData *gpt, int secondary, int entry_index, int priority) {
|
|
GptEntry *entry;
|
|
entry = GetEntry(gpt, secondary, entry_index);
|
|
|
|
assert(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY);
|
|
entry->attributes &= ~CGPT_ATTRIBUTE_PRIORITY_MASK;
|
|
entry->attributes |= (uint64_t)priority << CGPT_ATTRIBUTE_PRIORITY_OFFSET;
|
|
}
|
|
|
|
int GetPriority(GptData *gpt, int secondary, int entry_index) {
|
|
GptEntry *entry;
|
|
entry = GetEntry(gpt, secondary, entry_index);
|
|
return (entry->attributes & CGPT_ATTRIBUTE_PRIORITY_MASK) >>
|
|
CGPT_ATTRIBUTE_PRIORITY_OFFSET;
|
|
}
|
|
|
|
void SetTries(GptData *gpt, int secondary, int entry_index, int tries) {
|
|
GptEntry *entry;
|
|
entry = GetEntry(gpt, secondary, entry_index);
|
|
|
|
assert(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES);
|
|
entry->attributes &= ~CGPT_ATTRIBUTE_TRIES_MASK;
|
|
entry->attributes |= (uint64_t)tries << CGPT_ATTRIBUTE_TRIES_OFFSET;
|
|
}
|
|
|
|
int GetTries(GptData *gpt, int secondary, int entry_index) {
|
|
GptEntry *entry;
|
|
entry = GetEntry(gpt, secondary, entry_index);
|
|
return (entry->attributes & CGPT_ATTRIBUTE_TRIES_MASK) >>
|
|
CGPT_ATTRIBUTE_TRIES_OFFSET;
|
|
}
|
|
|
|
void SetSuccessful(GptData *gpt, int secondary, int entry_index, int success) {
|
|
GptEntry *entry;
|
|
entry = GetEntry(gpt, secondary, entry_index);
|
|
|
|
assert(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL);
|
|
entry->attributes &= ~CGPT_ATTRIBUTE_SUCCESSFUL_MASK;
|
|
entry->attributes |= (uint64_t)success << CGPT_ATTRIBUTE_SUCCESSFUL_OFFSET;
|
|
}
|
|
|
|
int GetSuccessful(GptData *gpt, int secondary, int entry_index) {
|
|
GptEntry *entry;
|
|
entry = GetEntry(gpt, secondary, entry_index);
|
|
return (entry->attributes & CGPT_ATTRIBUTE_SUCCESSFUL_MASK) >>
|
|
CGPT_ATTRIBUTE_SUCCESSFUL_OFFSET;
|
|
}
|
|
|
|
|
|
#define TOSTRING(A) #A
|
|
const char *GptError(int errnum) {
|
|
const char *error_string[] = {
|
|
TOSTRING(GPT_SUCCESS),
|
|
TOSTRING(GPT_ERROR_NO_VALID_KERNEL),
|
|
TOSTRING(GPT_ERROR_INVALID_HEADERS),
|
|
TOSTRING(GPT_ERROR_INVALID_ENTRIES),
|
|
TOSTRING(GPT_ERROR_INVALID_SECTOR_SIZE),
|
|
TOSTRING(GPT_ERROR_INVALID_SECTOR_NUMBER),
|
|
TOSTRING(GPT_ERROR_INVALID_UPDATE_TYPE)
|
|
};
|
|
if (errnum < 0 || errnum >= ARRAY_COUNT(error_string))
|
|
return "<illegal value>";
|
|
return error_string[errnum];
|
|
}
|
|
|
|
/* Update CRC value if necessary. */
|
|
void UpdateCrc(GptData *gpt) {
|
|
GptHeader *primary_header, *secondary_header;
|
|
|
|
primary_header = (GptHeader*)gpt->primary_header;
|
|
secondary_header = (GptHeader*)gpt->secondary_header;
|
|
|
|
if (gpt->modified & GPT_MODIFIED_ENTRIES1) {
|
|
primary_header->entries_crc32 =
|
|
Crc32(gpt->primary_entries, TOTAL_ENTRIES_SIZE);
|
|
}
|
|
if (gpt->modified & GPT_MODIFIED_ENTRIES2) {
|
|
secondary_header->entries_crc32 =
|
|
Crc32(gpt->secondary_entries, TOTAL_ENTRIES_SIZE);
|
|
}
|
|
if (gpt->modified & GPT_MODIFIED_HEADER1) {
|
|
primary_header->header_crc32 = 0;
|
|
primary_header->header_crc32 = Crc32(
|
|
(const uint8_t *)primary_header, primary_header->size);
|
|
}
|
|
if (gpt->modified & GPT_MODIFIED_HEADER2) {
|
|
secondary_header->header_crc32 = 0;
|
|
secondary_header->header_crc32 = Crc32(
|
|
(const uint8_t *)secondary_header, secondary_header->size);
|
|
}
|
|
}
|
|
/* Two headers are NOT bitwise identical. For example, my_lba pointers to header
|
|
* itself so that my_lba in primary and secondary is definitely different.
|
|
* Only the following fields should be identical.
|
|
*
|
|
* first_usable_lba
|
|
* last_usable_lba
|
|
* number_of_entries
|
|
* size_of_entry
|
|
* disk_uuid
|
|
*
|
|
* If any of above field are not matched, overwrite secondary with primary since
|
|
* we always trust primary.
|
|
* If any one of header is invalid, copy from another. */
|
|
int IsSynonymous(const GptHeader* a, const GptHeader* b) {
|
|
if ((a->first_usable_lba == b->first_usable_lba) &&
|
|
(a->last_usable_lba == b->last_usable_lba) &&
|
|
(a->number_of_entries == b->number_of_entries) &&
|
|
(a->size_of_entry == b->size_of_entry) &&
|
|
(!memcmp(&a->disk_uuid, &b->disk_uuid, sizeof(Guid))))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Primary entries and secondary entries should be bitwise identical.
|
|
* If two entries tables are valid, compare them. If not the same,
|
|
* overwrites secondary with primary (primary always has higher priority),
|
|
* and marks secondary as modified.
|
|
* If only one is valid, overwrites invalid one.
|
|
* If all are invalid, does nothing.
|
|
* This function returns bit masks for GptData.modified field.
|
|
* Note that CRC is NOT re-computed in this function.
|
|
*/
|
|
uint8_t RepairEntries(GptData *gpt, const uint32_t valid_entries) {
|
|
if (valid_entries == MASK_BOTH) {
|
|
if (memcmp(gpt->primary_entries, gpt->secondary_entries,
|
|
TOTAL_ENTRIES_SIZE)) {
|
|
memcpy(gpt->secondary_entries, gpt->primary_entries, TOTAL_ENTRIES_SIZE);
|
|
return GPT_MODIFIED_ENTRIES2;
|
|
}
|
|
} else if (valid_entries == MASK_PRIMARY) {
|
|
memcpy(gpt->secondary_entries, gpt->primary_entries, TOTAL_ENTRIES_SIZE);
|
|
return GPT_MODIFIED_ENTRIES2;
|
|
} else if (valid_entries == MASK_SECONDARY) {
|
|
memcpy(gpt->primary_entries, gpt->secondary_entries, TOTAL_ENTRIES_SIZE);
|
|
return GPT_MODIFIED_ENTRIES1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The above five fields are shared between primary and secondary headers.
|
|
* We can recover one header from another through copying those fields. */
|
|
void CopySynonymousParts(GptHeader* target, const GptHeader* source) {
|
|
target->first_usable_lba = source->first_usable_lba;
|
|
target->last_usable_lba = source->last_usable_lba;
|
|
target->number_of_entries = source->number_of_entries;
|
|
target->size_of_entry = source->size_of_entry;
|
|
memcpy(&target->disk_uuid, &source->disk_uuid, sizeof(Guid));
|
|
}
|
|
|
|
/* This function repairs primary and secondary headers if possible.
|
|
* If both headers are valid (CRC32 is correct) but
|
|
* a) indicate inconsistent usable LBA ranges,
|
|
* b) inconsistent partition entry size and number,
|
|
* c) inconsistent disk_uuid,
|
|
* we will use the primary header to overwrite secondary header.
|
|
* If primary is invalid (CRC32 is wrong), then we repair it from secondary.
|
|
* If secondary is invalid (CRC32 is wrong), then we repair it from primary.
|
|
* This function returns the bitmasks for modified header.
|
|
* Note that CRC value is NOT re-computed in this function. UpdateCrc() will
|
|
* do it later.
|
|
*/
|
|
uint8_t RepairHeader(GptData *gpt, const uint32_t valid_headers) {
|
|
GptHeader *primary_header, *secondary_header;
|
|
|
|
primary_header = (GptHeader*)gpt->primary_header;
|
|
secondary_header = (GptHeader*)gpt->secondary_header;
|
|
|
|
if (valid_headers == MASK_BOTH) {
|
|
if (!IsSynonymous(primary_header, secondary_header)) {
|
|
CopySynonymousParts(secondary_header, primary_header);
|
|
return GPT_MODIFIED_HEADER2;
|
|
}
|
|
} else if (valid_headers == MASK_PRIMARY) {
|
|
memcpy(secondary_header, primary_header, primary_header->size);
|
|
secondary_header->my_lba = gpt->drive_sectors - 1; /* the last sector */
|
|
secondary_header->alternate_lba = primary_header->my_lba;
|
|
secondary_header->entries_lba = secondary_header->my_lba -
|
|
GPT_ENTRIES_SECTORS;
|
|
return GPT_MODIFIED_HEADER2;
|
|
} else if (valid_headers == MASK_SECONDARY) {
|
|
memcpy(primary_header, secondary_header, secondary_header->size);
|
|
primary_header->my_lba = GPT_PMBR_SECTOR; /* the second sector on drive */
|
|
primary_header->alternate_lba = secondary_header->my_lba;
|
|
primary_header->entries_lba = primary_header->my_lba + GPT_HEADER_SECTOR;
|
|
return GPT_MODIFIED_HEADER1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int IsZero(const Guid *gp) {
|
|
return (0 == memcmp(gp, &guid_unused, sizeof(Guid)));
|
|
}
|
|
|
|
void PMBRToStr(struct pmbr *pmbr, char *str) {
|
|
char buf[256];
|
|
if (IsZero(&pmbr->boot_guid)) {
|
|
sprintf(str, "PMBR");
|
|
} else {
|
|
GuidToStr(&pmbr->boot_guid, buf);
|
|
sprintf(str, "PMBR (Boot GUID: %s)", buf);
|
|
}
|
|
}
|
|
|