mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2025-12-28 02:35:28 +00:00
This adds include/dptf.h to define the DPTF interface functions. As the first DPTF feature, it also adds a register to the EC's ACPI interface block. Register 0x04 is used to get and set the fan's target duty cycle, as a percentage value. Writing a 0 to this register will set the target duty cycle to 0, writing a 100 (0x64) will set it to 100%. Writing any other value will return the fan control to the EC, rather than driving it manually from the host. Likewise, reading from this register returns the current fan target duty cycle, as a percentage. If the EC is controlling the fan automatically, the returned value will be 0xFF. BUG=chrome-os-partner:23972 BRANCH=none TEST=manual You can monitor the fan state from the EC console with the "faninfo" command. From the host side, test this interface from a root shell. Read fan duty: iotools io_write8 0x66 0x80 iotools io_write8 0x62 4 iotools io_read8 0x62 Set fan duty to 100%: iotools io_write8 0x66 0x81 iotools io_write8 0x62 4 iotools io_write8 0x62 100 Set fan duty to 50%: iotools io_write8 0x66 0x81 iotools io_write8 0x62 4 iotools io_write8 0x62 50 Set fan duty to 0%: iotools io_write8 0x66 0x81 iotools io_write8 0x62 4 iotools io_write8 0x62 0 Set fan control back to automatic: iotools io_write8 0x66 0x81 iotools io_write8 0x62 4 iotools io_write8 0x62 -1 Change-Id: I91ec463095cfd17adf452f0967da3944b254d558 Signed-off-by: Bill Richardson <wfrichar@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/177423 Reviewed-by: Randall Spangler <rspangler@chromium.org>
1930 lines
55 KiB
C
1930 lines
55 KiB
C
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Host communication command constants for Chrome EC */
|
|
|
|
#ifndef __CROS_EC_COMMANDS_H
|
|
#define __CROS_EC_COMMANDS_H
|
|
|
|
/*
|
|
* Current version of this protocol
|
|
*
|
|
* TODO(crosbug.com/p/11223): This is effectively useless; protocol is
|
|
* determined in other ways. Remove this once the kernel code no longer
|
|
* depends on it.
|
|
*/
|
|
#define EC_PROTO_VERSION 0x00000002
|
|
|
|
/* Command version mask */
|
|
#define EC_VER_MASK(version) (1UL << (version))
|
|
|
|
/* I/O addresses for ACPI commands */
|
|
#define EC_LPC_ADDR_ACPI_DATA 0x62
|
|
#define EC_LPC_ADDR_ACPI_CMD 0x66
|
|
|
|
/* I/O addresses for host command */
|
|
#define EC_LPC_ADDR_HOST_DATA 0x200
|
|
#define EC_LPC_ADDR_HOST_CMD 0x204
|
|
|
|
/* I/O addresses for host command args and params */
|
|
/* Protocol version 2 */
|
|
#define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
|
|
#define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
|
|
* EC_PROTO2_MAX_PARAM_SIZE */
|
|
/* Protocol version 3 */
|
|
#define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
|
|
#define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
|
|
|
|
/* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
|
|
* and they tell the kernel that so we have to think of it as two parts. */
|
|
#define EC_HOST_CMD_REGION0 0x800
|
|
#define EC_HOST_CMD_REGION1 0x880
|
|
#define EC_HOST_CMD_REGION_SIZE 0x80
|
|
|
|
/* EC command register bit functions */
|
|
#define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */
|
|
#define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */
|
|
#define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */
|
|
#define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */
|
|
#define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */
|
|
#define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */
|
|
#define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */
|
|
|
|
#define EC_LPC_ADDR_MEMMAP 0x900
|
|
#define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
|
|
#define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
|
|
|
|
/* The offset address of each type of data in mapped memory. */
|
|
#define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors */
|
|
#define EC_MEMMAP_FAN 0x10 /* Fan speeds */
|
|
#define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* Temp sensors (second set) */
|
|
#define EC_MEMMAP_ID 0x20 /* 'E' 'C' */
|
|
#define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
|
|
#define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
|
|
#define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
|
|
#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
|
|
#define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
|
|
#define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host command interface flags */
|
|
#define EC_MEMMAP_SWITCHES 0x30
|
|
#define EC_MEMMAP_HOST_EVENTS 0x34
|
|
#define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
|
|
#define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
|
|
#define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
|
|
#define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */
|
|
#define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
|
|
#define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
|
|
#define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
|
|
#define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
|
|
#define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
|
|
#define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
|
|
#define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
|
|
#define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
|
|
#define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (uint16_t) */
|
|
|
|
/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
|
|
#define EC_TEMP_SENSOR_ENTRIES 16
|
|
/*
|
|
* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
|
|
*
|
|
* Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
|
|
*/
|
|
#define EC_TEMP_SENSOR_B_ENTRIES 8
|
|
|
|
/* Special values for mapped temperature sensors */
|
|
#define EC_TEMP_SENSOR_NOT_PRESENT 0xff
|
|
#define EC_TEMP_SENSOR_ERROR 0xfe
|
|
#define EC_TEMP_SENSOR_NOT_POWERED 0xfd
|
|
#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
|
|
/*
|
|
* The offset of temperature value stored in mapped memory. This allows
|
|
* reporting a temperature range of 200K to 454K = -73C to 181C.
|
|
*/
|
|
#define EC_TEMP_SENSOR_OFFSET 200
|
|
|
|
/*
|
|
* Number of ALS readings at EC_MEMMAP_ALS
|
|
*/
|
|
#define EC_ALS_ENTRIES 2
|
|
|
|
/*
|
|
* The default value a temperature sensor will return when it is present but
|
|
* has not been read this boot. This is a reasonable number to avoid
|
|
* triggering alarms on the host.
|
|
*/
|
|
#define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
|
|
|
|
#define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
|
|
#define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
|
|
#define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
|
|
|
|
/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
|
|
#define EC_BATT_FLAG_AC_PRESENT 0x01
|
|
#define EC_BATT_FLAG_BATT_PRESENT 0x02
|
|
#define EC_BATT_FLAG_DISCHARGING 0x04
|
|
#define EC_BATT_FLAG_CHARGING 0x08
|
|
#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
|
|
|
|
/* Switch flags at EC_MEMMAP_SWITCHES */
|
|
#define EC_SWITCH_LID_OPEN 0x01
|
|
#define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
|
|
#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
|
|
/* Was recovery requested via keyboard; now unused. */
|
|
#define EC_SWITCH_IGNORE1 0x08
|
|
/* Recovery requested via dedicated signal (from servo board) */
|
|
#define EC_SWITCH_DEDICATED_RECOVERY 0x10
|
|
/* Was fake developer mode switch; now unused. Remove in next refactor. */
|
|
#define EC_SWITCH_IGNORE0 0x20
|
|
|
|
/* Host command interface flags */
|
|
/* Host command interface supports LPC args (LPC interface only) */
|
|
#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
|
|
/* Host command interface supports version 3 protocol */
|
|
#define EC_HOST_CMD_FLAG_VERSION_3 0x02
|
|
|
|
/* Wireless switch flags */
|
|
#define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
|
|
#define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
|
|
#define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
|
|
#define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
|
|
#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
|
|
|
|
/*
|
|
* This header file is used in coreboot both in C and ACPI code. The ACPI code
|
|
* is pre-processed to handle constants but the ASL compiler is unable to
|
|
* handle actual C code so keep it separate.
|
|
*/
|
|
#ifndef __ACPI__
|
|
|
|
/*
|
|
* Define __packed if someone hasn't beat us to it. Linux kernel style
|
|
* checking prefers __packed over __attribute__((packed)).
|
|
*/
|
|
#ifndef __packed
|
|
#define __packed __attribute__((packed))
|
|
#endif
|
|
|
|
/* LPC command status byte masks */
|
|
/* EC has written a byte in the data register and host hasn't read it yet */
|
|
#define EC_LPC_STATUS_TO_HOST 0x01
|
|
/* Host has written a command/data byte and the EC hasn't read it yet */
|
|
#define EC_LPC_STATUS_FROM_HOST 0x02
|
|
/* EC is processing a command */
|
|
#define EC_LPC_STATUS_PROCESSING 0x04
|
|
/* Last write to EC was a command, not data */
|
|
#define EC_LPC_STATUS_LAST_CMD 0x08
|
|
/* EC is in burst mode. Unsupported by Chrome EC, so this bit is never set */
|
|
#define EC_LPC_STATUS_BURST_MODE 0x10
|
|
/* SCI event is pending (requesting SCI query) */
|
|
#define EC_LPC_STATUS_SCI_PENDING 0x20
|
|
/* SMI event is pending (requesting SMI query) */
|
|
#define EC_LPC_STATUS_SMI_PENDING 0x40
|
|
/* (reserved) */
|
|
#define EC_LPC_STATUS_RESERVED 0x80
|
|
|
|
/*
|
|
* EC is busy. This covers both the EC processing a command, and the host has
|
|
* written a new command but the EC hasn't picked it up yet.
|
|
*/
|
|
#define EC_LPC_STATUS_BUSY_MASK \
|
|
(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
|
|
|
|
/* Host command response codes */
|
|
enum ec_status {
|
|
EC_RES_SUCCESS = 0,
|
|
EC_RES_INVALID_COMMAND = 1,
|
|
EC_RES_ERROR = 2,
|
|
EC_RES_INVALID_PARAM = 3,
|
|
EC_RES_ACCESS_DENIED = 4,
|
|
EC_RES_INVALID_RESPONSE = 5,
|
|
EC_RES_INVALID_VERSION = 6,
|
|
EC_RES_INVALID_CHECKSUM = 7,
|
|
EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
|
|
EC_RES_UNAVAILABLE = 9, /* No response available */
|
|
EC_RES_TIMEOUT = 10, /* We got a timeout */
|
|
EC_RES_OVERFLOW = 11, /* Table / data overflow */
|
|
EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
|
|
EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
|
|
EC_RES_RESPONSE_TOO_BIG = 14 /* Response was too big to handle */
|
|
};
|
|
|
|
/*
|
|
* Host event codes. Note these are 1-based, not 0-based, because ACPI query
|
|
* EC command uses code 0 to mean "no event pending". We explicitly specify
|
|
* each value in the enum listing so they won't change if we delete/insert an
|
|
* item or rearrange the list (it needs to be stable across platforms, not
|
|
* just within a single compiled instance).
|
|
*/
|
|
enum host_event_code {
|
|
EC_HOST_EVENT_LID_CLOSED = 1,
|
|
EC_HOST_EVENT_LID_OPEN = 2,
|
|
EC_HOST_EVENT_POWER_BUTTON = 3,
|
|
EC_HOST_EVENT_AC_CONNECTED = 4,
|
|
EC_HOST_EVENT_AC_DISCONNECTED = 5,
|
|
EC_HOST_EVENT_BATTERY_LOW = 6,
|
|
EC_HOST_EVENT_BATTERY_CRITICAL = 7,
|
|
EC_HOST_EVENT_BATTERY = 8,
|
|
EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
|
|
EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
|
|
EC_HOST_EVENT_THERMAL = 11,
|
|
EC_HOST_EVENT_USB_CHARGER = 12,
|
|
EC_HOST_EVENT_KEY_PRESSED = 13,
|
|
/*
|
|
* EC has finished initializing the host interface. The host can check
|
|
* for this event following sending a EC_CMD_REBOOT_EC command to
|
|
* determine when the EC is ready to accept subsequent commands.
|
|
*/
|
|
EC_HOST_EVENT_INTERFACE_READY = 14,
|
|
/* Keyboard recovery combo has been pressed */
|
|
EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
|
|
|
|
/* Shutdown due to thermal overload */
|
|
EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
|
|
/* Shutdown due to battery level too low */
|
|
EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
|
|
|
|
/* Suggest that the AP throttle itself */
|
|
EC_HOST_EVENT_THROTTLE_START = 18,
|
|
/* Suggest that the AP resume normal speed */
|
|
EC_HOST_EVENT_THROTTLE_STOP = 19,
|
|
|
|
/*
|
|
* The high bit of the event mask is not used as a host event code. If
|
|
* it reads back as set, then the entire event mask should be
|
|
* considered invalid by the host. This can happen when reading the
|
|
* raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
|
|
* not initialized on the EC, or improperly configured on the host.
|
|
*/
|
|
EC_HOST_EVENT_INVALID = 32
|
|
};
|
|
/* Host event mask */
|
|
#define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
|
|
|
|
/* Arguments at EC_LPC_ADDR_HOST_ARGS */
|
|
struct ec_lpc_host_args {
|
|
uint8_t flags;
|
|
uint8_t command_version;
|
|
uint8_t data_size;
|
|
/*
|
|
* Checksum; sum of command + flags + command_version + data_size +
|
|
* all params/response data bytes.
|
|
*/
|
|
uint8_t checksum;
|
|
} __packed;
|
|
|
|
/* Flags for ec_lpc_host_args.flags */
|
|
/*
|
|
* Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
|
|
* params.
|
|
*
|
|
* If EC gets a command and this flag is not set, this is an old-style command.
|
|
* Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
|
|
* unknown length. EC must respond with an old-style response (that is,
|
|
* withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
|
|
*/
|
|
#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
|
|
/*
|
|
* Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
|
|
*
|
|
* If EC responds to a command and this flag is not set, this is an old-style
|
|
* response. Command version is 0 and response data from EC is at
|
|
* EC_LPC_ADDR_OLD_PARAM with unknown length.
|
|
*/
|
|
#define EC_HOST_ARGS_FLAG_TO_HOST 0x02
|
|
|
|
/*****************************************************************************/
|
|
/*
|
|
* Byte codes returned by EC over SPI interface.
|
|
*
|
|
* These can be used by the AP to debug the EC interface, and to determine
|
|
* when the EC is not in a state where it will ever get around to responding
|
|
* to the AP.
|
|
*
|
|
* Example of sequence of bytes read from EC for a current good transfer:
|
|
* 1. - - AP asserts chip select (CS#)
|
|
* 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
|
|
* 3. - - EC starts handling CS# interrupt
|
|
* 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
|
|
* 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
|
|
* bytes looking for EC_SPI_FRAME_START
|
|
* 6. - - EC finishes processing and sets up response
|
|
* 7. EC_SPI_FRAME_START - AP reads frame byte
|
|
* 8. (response packet) - AP reads response packet
|
|
* 9. EC_SPI_PAST_END - Any additional bytes read by AP
|
|
* 10 - - AP deasserts chip select
|
|
* 11 - - EC processes CS# interrupt and sets up DMA for
|
|
* next request
|
|
*
|
|
* If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
|
|
* the following byte values:
|
|
* EC_SPI_OLD_READY
|
|
* EC_SPI_RX_READY
|
|
* EC_SPI_RECEIVING
|
|
* EC_SPI_PROCESSING
|
|
*
|
|
* Then the EC found an error in the request, or was not ready for the request
|
|
* and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
|
|
* because the EC is unable to tell when the AP is done sending its request.
|
|
*/
|
|
|
|
/*
|
|
* Framing byte which precedes a response packet from the EC. After sending a
|
|
* request, the AP will clock in bytes until it sees the framing byte, then
|
|
* clock in the response packet.
|
|
*/
|
|
#define EC_SPI_FRAME_START 0xec
|
|
|
|
/*
|
|
* Padding bytes which are clocked out after the end of a response packet.
|
|
*/
|
|
#define EC_SPI_PAST_END 0xed
|
|
|
|
/*
|
|
* EC is ready to receive, and has ignored the byte sent by the AP. EC expects
|
|
* that the AP will send a valid packet header (starting with
|
|
* EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
|
|
*/
|
|
#define EC_SPI_RX_READY 0xf8
|
|
|
|
/*
|
|
* EC has started receiving the request from the AP, but hasn't started
|
|
* processing it yet.
|
|
*/
|
|
#define EC_SPI_RECEIVING 0xf9
|
|
|
|
/* EC has received the entire request from the AP and is processing it. */
|
|
#define EC_SPI_PROCESSING 0xfa
|
|
|
|
/*
|
|
* EC received bad data from the AP, such as a packet header with an invalid
|
|
* length. EC will ignore all data until chip select deasserts.
|
|
*/
|
|
#define EC_SPI_RX_BAD_DATA 0xfb
|
|
|
|
/*
|
|
* EC received data from the AP before it was ready. That is, the AP asserted
|
|
* chip select and started clocking data before the EC was ready to receive it.
|
|
* EC will ignore all data until chip select deasserts.
|
|
*/
|
|
#define EC_SPI_NOT_READY 0xfc
|
|
|
|
/*
|
|
* EC was ready to receive a request from the AP. EC has treated the byte sent
|
|
* by the AP as part of a request packet, or (for old-style ECs) is processing
|
|
* a fully received packet but is not ready to respond yet.
|
|
*/
|
|
#define EC_SPI_OLD_READY 0xfd
|
|
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
* Protocol version 2 for I2C and SPI send a request this way:
|
|
*
|
|
* 0 EC_CMD_VERSION0 + (command version)
|
|
* 1 Command number
|
|
* 2 Length of params = N
|
|
* 3..N+2 Params, if any
|
|
* N+3 8-bit checksum of bytes 0..N+2
|
|
*
|
|
* The corresponding response is:
|
|
*
|
|
* 0 Result code (EC_RES_*)
|
|
* 1 Length of params = M
|
|
* 2..M+1 Params, if any
|
|
* M+2 8-bit checksum of bytes 0..M+1
|
|
*/
|
|
#define EC_PROTO2_REQUEST_HEADER_BYTES 3
|
|
#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
|
|
#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
|
|
EC_PROTO2_REQUEST_TRAILER_BYTES)
|
|
|
|
#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
|
|
#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
|
|
#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
|
|
EC_PROTO2_RESPONSE_TRAILER_BYTES)
|
|
|
|
/* Parameter length was limited by the LPC interface */
|
|
#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
|
|
|
|
/* Maximum request and response packet sizes for protocol version 2 */
|
|
#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
|
|
EC_PROTO2_MAX_PARAM_SIZE)
|
|
#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
|
|
EC_PROTO2_MAX_PARAM_SIZE)
|
|
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
* Value written to legacy command port / prefix byte to indicate protocol
|
|
* 3+ structs are being used. Usage is bus-dependent.
|
|
*/
|
|
#define EC_COMMAND_PROTOCOL_3 0xda
|
|
|
|
#define EC_HOST_REQUEST_VERSION 3
|
|
|
|
/* Version 3 request from host */
|
|
struct ec_host_request {
|
|
/* Struct version (=3)
|
|
*
|
|
* EC will return EC_RES_INVALID_HEADER if it receives a header with a
|
|
* version it doesn't know how to parse.
|
|
*/
|
|
uint8_t struct_version;
|
|
|
|
/*
|
|
* Checksum of request and data; sum of all bytes including checksum
|
|
* should total to 0.
|
|
*/
|
|
uint8_t checksum;
|
|
|
|
/* Command code */
|
|
uint16_t command;
|
|
|
|
/* Command version */
|
|
uint8_t command_version;
|
|
|
|
/* Unused byte in current protocol version; set to 0 */
|
|
uint8_t reserved;
|
|
|
|
/* Length of data which follows this header */
|
|
uint16_t data_len;
|
|
} __packed;
|
|
|
|
#define EC_HOST_RESPONSE_VERSION 3
|
|
|
|
/* Version 3 response from EC */
|
|
struct ec_host_response {
|
|
/* Struct version (=3) */
|
|
uint8_t struct_version;
|
|
|
|
/*
|
|
* Checksum of response and data; sum of all bytes including checksum
|
|
* should total to 0.
|
|
*/
|
|
uint8_t checksum;
|
|
|
|
/* Result code (EC_RES_*) */
|
|
uint16_t result;
|
|
|
|
/* Length of data which follows this header */
|
|
uint16_t data_len;
|
|
|
|
/* Unused bytes in current protocol version; set to 0 */
|
|
uint16_t reserved;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/*
|
|
* Notes on commands:
|
|
*
|
|
* Each command is an 8-byte command value. Commands which take params or
|
|
* return response data specify structs for that data. If no struct is
|
|
* specified, the command does not input or output data, respectively.
|
|
* Parameter/response length is implicit in the structs. Some underlying
|
|
* communication protocols (I2C, SPI) may add length or checksum headers, but
|
|
* those are implementation-dependent and not defined here.
|
|
*/
|
|
|
|
/*****************************************************************************/
|
|
/* General / test commands */
|
|
|
|
/*
|
|
* Get protocol version, used to deal with non-backward compatible protocol
|
|
* changes.
|
|
*/
|
|
#define EC_CMD_PROTO_VERSION 0x00
|
|
|
|
struct ec_response_proto_version {
|
|
uint32_t version;
|
|
} __packed;
|
|
|
|
/*
|
|
* Hello. This is a simple command to test the EC is responsive to
|
|
* commands.
|
|
*/
|
|
#define EC_CMD_HELLO 0x01
|
|
|
|
struct ec_params_hello {
|
|
uint32_t in_data; /* Pass anything here */
|
|
} __packed;
|
|
|
|
struct ec_response_hello {
|
|
uint32_t out_data; /* Output will be in_data + 0x01020304 */
|
|
} __packed;
|
|
|
|
/* Get version number */
|
|
#define EC_CMD_GET_VERSION 0x02
|
|
|
|
enum ec_current_image {
|
|
EC_IMAGE_UNKNOWN = 0,
|
|
EC_IMAGE_RO,
|
|
EC_IMAGE_RW
|
|
};
|
|
|
|
struct ec_response_get_version {
|
|
/* Null-terminated version strings for RO, RW */
|
|
char version_string_ro[32];
|
|
char version_string_rw[32];
|
|
char reserved[32]; /* Was previously RW-B string */
|
|
uint32_t current_image; /* One of ec_current_image */
|
|
} __packed;
|
|
|
|
/* Read test */
|
|
#define EC_CMD_READ_TEST 0x03
|
|
|
|
struct ec_params_read_test {
|
|
uint32_t offset; /* Starting value for read buffer */
|
|
uint32_t size; /* Size to read in bytes */
|
|
} __packed;
|
|
|
|
struct ec_response_read_test {
|
|
uint32_t data[32];
|
|
} __packed;
|
|
|
|
/*
|
|
* Get build information
|
|
*
|
|
* Response is null-terminated string.
|
|
*/
|
|
#define EC_CMD_GET_BUILD_INFO 0x04
|
|
|
|
/* Get chip info */
|
|
#define EC_CMD_GET_CHIP_INFO 0x05
|
|
|
|
struct ec_response_get_chip_info {
|
|
/* Null-terminated strings */
|
|
char vendor[32];
|
|
char name[32];
|
|
char revision[32]; /* Mask version */
|
|
} __packed;
|
|
|
|
/* Get board HW version */
|
|
#define EC_CMD_GET_BOARD_VERSION 0x06
|
|
|
|
struct ec_response_board_version {
|
|
uint16_t board_version; /* A monotonously incrementing number. */
|
|
} __packed;
|
|
|
|
/*
|
|
* Read memory-mapped data.
|
|
*
|
|
* This is an alternate interface to memory-mapped data for bus protocols
|
|
* which don't support direct-mapped memory - I2C, SPI, etc.
|
|
*
|
|
* Response is params.size bytes of data.
|
|
*/
|
|
#define EC_CMD_READ_MEMMAP 0x07
|
|
|
|
struct ec_params_read_memmap {
|
|
uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */
|
|
uint8_t size; /* Size to read in bytes */
|
|
} __packed;
|
|
|
|
/* Read versions supported for a command */
|
|
#define EC_CMD_GET_CMD_VERSIONS 0x08
|
|
|
|
struct ec_params_get_cmd_versions {
|
|
uint8_t cmd; /* Command to check */
|
|
} __packed;
|
|
|
|
struct ec_response_get_cmd_versions {
|
|
/*
|
|
* Mask of supported versions; use EC_VER_MASK() to compare with a
|
|
* desired version.
|
|
*/
|
|
uint32_t version_mask;
|
|
} __packed;
|
|
|
|
/*
|
|
* Check EC communcations status (busy). This is needed on i2c/spi but not
|
|
* on lpc since it has its own out-of-band busy indicator.
|
|
*
|
|
* lpc must read the status from the command register. Attempting this on
|
|
* lpc will overwrite the args/parameter space and corrupt its data.
|
|
*/
|
|
#define EC_CMD_GET_COMMS_STATUS 0x09
|
|
|
|
/* Avoid using ec_status which is for return values */
|
|
enum ec_comms_status {
|
|
EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */
|
|
};
|
|
|
|
struct ec_response_get_comms_status {
|
|
uint32_t flags; /* Mask of enum ec_comms_status */
|
|
} __packed;
|
|
|
|
/* Fake a variety of responses, purely for testing purposes. */
|
|
#define EC_CMD_TEST_PROTOCOL 0x0a
|
|
|
|
/* Tell the EC what to send back to us. */
|
|
struct ec_params_test_protocol {
|
|
uint32_t ec_result;
|
|
uint32_t ret_len;
|
|
uint8_t buf[32];
|
|
} __packed;
|
|
|
|
/* Here it comes... */
|
|
struct ec_response_test_protocol {
|
|
uint8_t buf[32];
|
|
} __packed;
|
|
|
|
/* Get prococol information */
|
|
#define EC_CMD_GET_PROTOCOL_INFO 0x0b
|
|
|
|
/* Flags for ec_response_get_protocol_info.flags */
|
|
/* EC_RES_IN_PROGRESS may be returned if a command is slow */
|
|
#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
|
|
|
|
struct ec_response_get_protocol_info {
|
|
/* Fields which exist if at least protocol version 3 supported */
|
|
|
|
/* Bitmask of protocol versions supported (1 << n means version n)*/
|
|
uint32_t protocol_versions;
|
|
|
|
/* Maximum request packet size, in bytes */
|
|
uint16_t max_request_packet_size;
|
|
|
|
/* Maximum response packet size, in bytes */
|
|
uint16_t max_response_packet_size;
|
|
|
|
/* Flags; see EC_PROTOCOL_INFO_* */
|
|
uint32_t flags;
|
|
} __packed;
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Get/Set miscellaneous values */
|
|
|
|
/* The upper byte of .flags tells what to do (nothing means "get") */
|
|
#define EC_GSV_SET 0x80000000
|
|
|
|
/* The lower three bytes of .flags identifies the parameter, if that has
|
|
meaning for an individual command. */
|
|
#define EC_GSV_PARAM_MASK 0x00ffffff
|
|
|
|
struct ec_params_get_set_value {
|
|
uint32_t flags;
|
|
uint32_t value;
|
|
} __packed;
|
|
|
|
struct ec_response_get_set_value {
|
|
uint32_t flags;
|
|
uint32_t value;
|
|
} __packed;
|
|
|
|
/* More than one command can use these structs to get/set paramters. */
|
|
#define EC_CMD_GSV_PAUSE_IN_S5 0x0c
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Flash commands */
|
|
|
|
/* Get flash info */
|
|
#define EC_CMD_FLASH_INFO 0x10
|
|
|
|
/* Version 0 returns these fields */
|
|
struct ec_response_flash_info {
|
|
/* Usable flash size, in bytes */
|
|
uint32_t flash_size;
|
|
/*
|
|
* Write block size. Write offset and size must be a multiple
|
|
* of this.
|
|
*/
|
|
uint32_t write_block_size;
|
|
/*
|
|
* Erase block size. Erase offset and size must be a multiple
|
|
* of this.
|
|
*/
|
|
uint32_t erase_block_size;
|
|
/*
|
|
* Protection block size. Protection offset and size must be a
|
|
* multiple of this.
|
|
*/
|
|
uint32_t protect_block_size;
|
|
} __packed;
|
|
|
|
/* Flags for version 1+ flash info command */
|
|
/* EC flash erases bits to 0 instead of 1 */
|
|
#define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
|
|
|
|
/*
|
|
* Version 1 returns the same initial fields as version 0, with additional
|
|
* fields following.
|
|
*
|
|
* gcc anonymous structs don't seem to get along with the __packed directive;
|
|
* if they did we'd define the version 0 struct as a sub-struct of this one.
|
|
*/
|
|
struct ec_response_flash_info_1 {
|
|
/* Version 0 fields; see above for description */
|
|
uint32_t flash_size;
|
|
uint32_t write_block_size;
|
|
uint32_t erase_block_size;
|
|
uint32_t protect_block_size;
|
|
|
|
/* Version 1 adds these fields: */
|
|
/*
|
|
* Ideal write size in bytes. Writes will be fastest if size is
|
|
* exactly this and offset is a multiple of this. For example, an EC
|
|
* may have a write buffer which can do half-page operations if data is
|
|
* aligned, and a slower word-at-a-time write mode.
|
|
*/
|
|
uint32_t write_ideal_size;
|
|
|
|
/* Flags; see EC_FLASH_INFO_* */
|
|
uint32_t flags;
|
|
} __packed;
|
|
|
|
/*
|
|
* Read flash
|
|
*
|
|
* Response is params.size bytes of data.
|
|
*/
|
|
#define EC_CMD_FLASH_READ 0x11
|
|
|
|
struct ec_params_flash_read {
|
|
uint32_t offset; /* Byte offset to read */
|
|
uint32_t size; /* Size to read in bytes */
|
|
} __packed;
|
|
|
|
/* Write flash */
|
|
#define EC_CMD_FLASH_WRITE 0x12
|
|
#define EC_VER_FLASH_WRITE 1
|
|
|
|
/* Version 0 of the flash command supported only 64 bytes of data */
|
|
#define EC_FLASH_WRITE_VER0_SIZE 64
|
|
|
|
struct ec_params_flash_write {
|
|
uint32_t offset; /* Byte offset to write */
|
|
uint32_t size; /* Size to write in bytes */
|
|
/* Followed by data to write */
|
|
} __packed;
|
|
|
|
/* Erase flash */
|
|
#define EC_CMD_FLASH_ERASE 0x13
|
|
|
|
struct ec_params_flash_erase {
|
|
uint32_t offset; /* Byte offset to erase */
|
|
uint32_t size; /* Size to erase in bytes */
|
|
} __packed;
|
|
|
|
/*
|
|
* Get/set flash protection.
|
|
*
|
|
* If mask!=0, sets/clear the requested bits of flags. Depending on the
|
|
* firmware write protect GPIO, not all flags will take effect immediately;
|
|
* some flags require a subsequent hard reset to take effect. Check the
|
|
* returned flags bits to see what actually happened.
|
|
*
|
|
* If mask=0, simply returns the current flags state.
|
|
*/
|
|
#define EC_CMD_FLASH_PROTECT 0x15
|
|
#define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
|
|
|
|
/* Flags for flash protection */
|
|
/* RO flash code protected when the EC boots */
|
|
#define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0)
|
|
/*
|
|
* RO flash code protected now. If this bit is set, at-boot status cannot
|
|
* be changed.
|
|
*/
|
|
#define EC_FLASH_PROTECT_RO_NOW (1 << 1)
|
|
/* Entire flash code protected now, until reboot. */
|
|
#define EC_FLASH_PROTECT_ALL_NOW (1 << 2)
|
|
/* Flash write protect GPIO is asserted now */
|
|
#define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3)
|
|
/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
|
|
#define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4)
|
|
/*
|
|
* Error - flash protection is in inconsistent state. At least one bank of
|
|
* flash which should be protected is not protected. Usually fixed by
|
|
* re-requesting the desired flags, or by a hard reset if that fails.
|
|
*/
|
|
#define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
|
|
/* Entile flash code protected when the EC boots */
|
|
#define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6)
|
|
|
|
struct ec_params_flash_protect {
|
|
uint32_t mask; /* Bits in flags to apply */
|
|
uint32_t flags; /* New flags to apply */
|
|
} __packed;
|
|
|
|
struct ec_response_flash_protect {
|
|
/* Current value of flash protect flags */
|
|
uint32_t flags;
|
|
/*
|
|
* Flags which are valid on this platform. This allows the caller
|
|
* to distinguish between flags which aren't set vs. flags which can't
|
|
* be set on this platform.
|
|
*/
|
|
uint32_t valid_flags;
|
|
/* Flags which can be changed given the current protection state */
|
|
uint32_t writable_flags;
|
|
} __packed;
|
|
|
|
/*
|
|
* Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
|
|
* write protect. These commands may be reused with version > 0.
|
|
*/
|
|
|
|
/* Get the region offset/size */
|
|
#define EC_CMD_FLASH_REGION_INFO 0x16
|
|
#define EC_VER_FLASH_REGION_INFO 1
|
|
|
|
enum ec_flash_region {
|
|
/* Region which holds read-only EC image */
|
|
EC_FLASH_REGION_RO = 0,
|
|
/* Region which holds rewritable EC image */
|
|
EC_FLASH_REGION_RW,
|
|
/*
|
|
* Region which should be write-protected in the factory (a superset of
|
|
* EC_FLASH_REGION_RO)
|
|
*/
|
|
EC_FLASH_REGION_WP_RO,
|
|
/* Number of regions */
|
|
EC_FLASH_REGION_COUNT,
|
|
};
|
|
|
|
struct ec_params_flash_region_info {
|
|
uint32_t region; /* enum ec_flash_region */
|
|
} __packed;
|
|
|
|
struct ec_response_flash_region_info {
|
|
uint32_t offset;
|
|
uint32_t size;
|
|
} __packed;
|
|
|
|
/* Read/write VbNvContext */
|
|
#define EC_CMD_VBNV_CONTEXT 0x17
|
|
#define EC_VER_VBNV_CONTEXT 1
|
|
#define EC_VBNV_BLOCK_SIZE 16
|
|
|
|
enum ec_vbnvcontext_op {
|
|
EC_VBNV_CONTEXT_OP_READ,
|
|
EC_VBNV_CONTEXT_OP_WRITE,
|
|
};
|
|
|
|
struct ec_params_vbnvcontext {
|
|
uint32_t op;
|
|
uint8_t block[EC_VBNV_BLOCK_SIZE];
|
|
} __packed;
|
|
|
|
struct ec_response_vbnvcontext {
|
|
uint8_t block[EC_VBNV_BLOCK_SIZE];
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* PWM commands */
|
|
|
|
/* Get fan target RPM */
|
|
#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
|
|
|
|
struct ec_response_pwm_get_fan_rpm {
|
|
uint32_t rpm;
|
|
} __packed;
|
|
|
|
/* Set target fan RPM */
|
|
#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
|
|
|
|
struct ec_params_pwm_set_fan_target_rpm {
|
|
uint32_t rpm;
|
|
} __packed;
|
|
|
|
/* Get keyboard backlight */
|
|
#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
|
|
|
|
struct ec_response_pwm_get_keyboard_backlight {
|
|
uint8_t percent;
|
|
uint8_t enabled;
|
|
} __packed;
|
|
|
|
/* Set keyboard backlight */
|
|
#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
|
|
|
|
struct ec_params_pwm_set_keyboard_backlight {
|
|
uint8_t percent;
|
|
} __packed;
|
|
|
|
/* Set target fan PWM duty cycle */
|
|
#define EC_CMD_PWM_SET_FAN_DUTY 0x24
|
|
|
|
struct ec_params_pwm_set_fan_duty {
|
|
uint32_t percent;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/*
|
|
* Lightbar commands. This looks worse than it is. Since we only use one HOST
|
|
* command to say "talk to the lightbar", we put the "and tell it to do X" part
|
|
* into a subcommand. We'll make separate structs for subcommands with
|
|
* different input args, so that we know how much to expect.
|
|
*/
|
|
#define EC_CMD_LIGHTBAR_CMD 0x28
|
|
|
|
struct rgb_s {
|
|
uint8_t r, g, b;
|
|
};
|
|
|
|
#define LB_BATTERY_LEVELS 4
|
|
/* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
|
|
* host command, but the alignment is the same regardless. Keep it that way.
|
|
*/
|
|
struct lightbar_params {
|
|
/* Timing */
|
|
int32_t google_ramp_up;
|
|
int32_t google_ramp_down;
|
|
int32_t s3s0_ramp_up;
|
|
int32_t s0_tick_delay[2]; /* AC=0/1 */
|
|
int32_t s0a_tick_delay[2]; /* AC=0/1 */
|
|
int32_t s0s3_ramp_down;
|
|
int32_t s3_sleep_for;
|
|
int32_t s3_ramp_up;
|
|
int32_t s3_ramp_down;
|
|
|
|
/* Oscillation */
|
|
uint8_t new_s0;
|
|
uint8_t osc_min[2]; /* AC=0/1 */
|
|
uint8_t osc_max[2]; /* AC=0/1 */
|
|
uint8_t w_ofs[2]; /* AC=0/1 */
|
|
|
|
/* Brightness limits based on the backlight and AC. */
|
|
uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
|
|
uint8_t bright_bl_on_min[2]; /* AC=0/1 */
|
|
uint8_t bright_bl_on_max[2]; /* AC=0/1 */
|
|
|
|
/* Battery level thresholds */
|
|
uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
|
|
|
|
/* Map [AC][battery_level] to color index */
|
|
uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
|
|
uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
|
|
|
|
/* Color palette */
|
|
struct rgb_s color[8]; /* 0-3 are Google colors */
|
|
} __packed;
|
|
|
|
struct ec_params_lightbar {
|
|
uint8_t cmd; /* Command (see enum lightbar_command) */
|
|
union {
|
|
struct {
|
|
/* no args */
|
|
} dump, off, on, init, get_seq, get_params, version;
|
|
|
|
struct num {
|
|
uint8_t num;
|
|
} brightness, seq, demo;
|
|
|
|
struct reg {
|
|
uint8_t ctrl, reg, value;
|
|
} reg;
|
|
|
|
struct rgb {
|
|
uint8_t led, red, green, blue;
|
|
} rgb;
|
|
|
|
struct lightbar_params set_params;
|
|
};
|
|
} __packed;
|
|
|
|
struct ec_response_lightbar {
|
|
union {
|
|
struct dump {
|
|
struct {
|
|
uint8_t reg;
|
|
uint8_t ic0;
|
|
uint8_t ic1;
|
|
} vals[23];
|
|
} dump;
|
|
|
|
struct get_seq {
|
|
uint8_t num;
|
|
} get_seq;
|
|
|
|
struct lightbar_params get_params;
|
|
|
|
struct version {
|
|
uint32_t num;
|
|
uint32_t flags;
|
|
} version;
|
|
|
|
struct {
|
|
/* no return params */
|
|
} off, on, init, brightness, seq, reg, rgb, demo, set_params;
|
|
};
|
|
} __packed;
|
|
|
|
/* Lightbar commands */
|
|
enum lightbar_command {
|
|
LIGHTBAR_CMD_DUMP = 0,
|
|
LIGHTBAR_CMD_OFF = 1,
|
|
LIGHTBAR_CMD_ON = 2,
|
|
LIGHTBAR_CMD_INIT = 3,
|
|
LIGHTBAR_CMD_BRIGHTNESS = 4,
|
|
LIGHTBAR_CMD_SEQ = 5,
|
|
LIGHTBAR_CMD_REG = 6,
|
|
LIGHTBAR_CMD_RGB = 7,
|
|
LIGHTBAR_CMD_GET_SEQ = 8,
|
|
LIGHTBAR_CMD_DEMO = 9,
|
|
LIGHTBAR_CMD_GET_PARAMS = 10,
|
|
LIGHTBAR_CMD_SET_PARAMS = 11,
|
|
LIGHTBAR_CMD_VERSION = 12,
|
|
LIGHTBAR_NUM_CMDS
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
/* LED control commands */
|
|
|
|
#define EC_CMD_LED_CONTROL 0x29
|
|
|
|
enum ec_led_id {
|
|
/* LED to indicate battery state of charge */
|
|
EC_LED_ID_BATTERY_LED = 0,
|
|
/*
|
|
* LED to indicate system power state (on or in suspend).
|
|
* May be on power button or on C-panel.
|
|
*/
|
|
EC_LED_ID_POWER_LED,
|
|
/* LED on power adapter or its plug */
|
|
EC_LED_ID_ADAPTER_LED,
|
|
|
|
EC_LED_ID_COUNT
|
|
};
|
|
|
|
/* LED control flags */
|
|
#define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
|
|
#define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */
|
|
|
|
enum ec_led_colors {
|
|
EC_LED_COLOR_RED = 0,
|
|
EC_LED_COLOR_GREEN,
|
|
EC_LED_COLOR_BLUE,
|
|
EC_LED_COLOR_YELLOW,
|
|
EC_LED_COLOR_WHITE,
|
|
|
|
EC_LED_COLOR_COUNT
|
|
};
|
|
|
|
struct ec_params_led_control {
|
|
uint8_t led_id; /* Which LED to control */
|
|
uint8_t flags; /* Control flags */
|
|
|
|
uint8_t brightness[EC_LED_COLOR_COUNT];
|
|
} __packed;
|
|
|
|
struct ec_response_led_control {
|
|
/*
|
|
* Available brightness value range.
|
|
*
|
|
* Range 0 means color channel not present.
|
|
* Range 1 means on/off control.
|
|
* Other values means the LED is control by PWM.
|
|
*/
|
|
uint8_t brightness_range[EC_LED_COLOR_COUNT];
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Verified boot commands */
|
|
|
|
/*
|
|
* Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
|
|
* reused for other purposes with version > 0.
|
|
*/
|
|
|
|
/* Verified boot hash command */
|
|
#define EC_CMD_VBOOT_HASH 0x2A
|
|
|
|
struct ec_params_vboot_hash {
|
|
uint8_t cmd; /* enum ec_vboot_hash_cmd */
|
|
uint8_t hash_type; /* enum ec_vboot_hash_type */
|
|
uint8_t nonce_size; /* Nonce size; may be 0 */
|
|
uint8_t reserved0; /* Reserved; set 0 */
|
|
uint32_t offset; /* Offset in flash to hash */
|
|
uint32_t size; /* Number of bytes to hash */
|
|
uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
|
|
} __packed;
|
|
|
|
struct ec_response_vboot_hash {
|
|
uint8_t status; /* enum ec_vboot_hash_status */
|
|
uint8_t hash_type; /* enum ec_vboot_hash_type */
|
|
uint8_t digest_size; /* Size of hash digest in bytes */
|
|
uint8_t reserved0; /* Ignore; will be 0 */
|
|
uint32_t offset; /* Offset in flash which was hashed */
|
|
uint32_t size; /* Number of bytes hashed */
|
|
uint8_t hash_digest[64]; /* Hash digest data */
|
|
} __packed;
|
|
|
|
enum ec_vboot_hash_cmd {
|
|
EC_VBOOT_HASH_GET = 0, /* Get current hash status */
|
|
EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
|
|
EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
|
|
EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
|
|
};
|
|
|
|
enum ec_vboot_hash_type {
|
|
EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
|
|
};
|
|
|
|
enum ec_vboot_hash_status {
|
|
EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
|
|
EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
|
|
EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
|
|
};
|
|
|
|
/*
|
|
* Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
|
|
* If one of these is specified, the EC will automatically update offset and
|
|
* size to the correct values for the specified image (RO or RW).
|
|
*/
|
|
#define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
|
|
#define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
|
|
|
|
/*****************************************************************************/
|
|
/* USB charging control commands */
|
|
|
|
/* Set USB port charging mode */
|
|
#define EC_CMD_USB_CHARGE_SET_MODE 0x30
|
|
|
|
struct ec_params_usb_charge_set_mode {
|
|
uint8_t usb_port_id;
|
|
uint8_t mode;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Persistent storage for host */
|
|
|
|
/* Maximum bytes that can be read/written in a single command */
|
|
#define EC_PSTORE_SIZE_MAX 64
|
|
|
|
/* Get persistent storage info */
|
|
#define EC_CMD_PSTORE_INFO 0x40
|
|
|
|
struct ec_response_pstore_info {
|
|
/* Persistent storage size, in bytes */
|
|
uint32_t pstore_size;
|
|
/* Access size; read/write offset and size must be a multiple of this */
|
|
uint32_t access_size;
|
|
} __packed;
|
|
|
|
/*
|
|
* Read persistent storage
|
|
*
|
|
* Response is params.size bytes of data.
|
|
*/
|
|
#define EC_CMD_PSTORE_READ 0x41
|
|
|
|
struct ec_params_pstore_read {
|
|
uint32_t offset; /* Byte offset to read */
|
|
uint32_t size; /* Size to read in bytes */
|
|
} __packed;
|
|
|
|
/* Write persistent storage */
|
|
#define EC_CMD_PSTORE_WRITE 0x42
|
|
|
|
struct ec_params_pstore_write {
|
|
uint32_t offset; /* Byte offset to write */
|
|
uint32_t size; /* Size to write in bytes */
|
|
uint8_t data[EC_PSTORE_SIZE_MAX];
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Real-time clock */
|
|
|
|
/* RTC params and response structures */
|
|
struct ec_params_rtc {
|
|
uint32_t time;
|
|
} __packed;
|
|
|
|
struct ec_response_rtc {
|
|
uint32_t time;
|
|
} __packed;
|
|
|
|
/* These use ec_response_rtc */
|
|
#define EC_CMD_RTC_GET_VALUE 0x44
|
|
#define EC_CMD_RTC_GET_ALARM 0x45
|
|
|
|
/* These all use ec_params_rtc */
|
|
#define EC_CMD_RTC_SET_VALUE 0x46
|
|
#define EC_CMD_RTC_SET_ALARM 0x47
|
|
|
|
/*****************************************************************************/
|
|
/* Port80 log access */
|
|
|
|
/* Get last port80 code from previous boot */
|
|
#define EC_CMD_PORT80_LAST_BOOT 0x48
|
|
|
|
struct ec_response_port80_last_boot {
|
|
uint16_t code;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Thermal engine commands. Note that there are two implementations. We'll
|
|
* reuse the command number, but the data and behavior is incompatible.
|
|
* Version 0 is what originally shipped on Link.
|
|
* Version 1 separates the CPU thermal limits from the fan control.
|
|
*/
|
|
|
|
#define EC_CMD_THERMAL_SET_THRESHOLD 0x50
|
|
#define EC_CMD_THERMAL_GET_THRESHOLD 0x51
|
|
|
|
/* The version 0 structs are opaque. You have to know what they are for
|
|
* the get/set commands to make any sense.
|
|
*/
|
|
|
|
/* Version 0 - set */
|
|
struct ec_params_thermal_set_threshold {
|
|
uint8_t sensor_type;
|
|
uint8_t threshold_id;
|
|
uint16_t value;
|
|
} __packed;
|
|
|
|
/* Version 0 - get */
|
|
struct ec_params_thermal_get_threshold {
|
|
uint8_t sensor_type;
|
|
uint8_t threshold_id;
|
|
} __packed;
|
|
|
|
struct ec_response_thermal_get_threshold {
|
|
uint16_t value;
|
|
} __packed;
|
|
|
|
|
|
/* The version 1 structs are visible. */
|
|
enum ec_temp_thresholds {
|
|
EC_TEMP_THRESH_WARN = 0,
|
|
EC_TEMP_THRESH_HIGH,
|
|
EC_TEMP_THRESH_HALT,
|
|
|
|
EC_TEMP_THRESH_COUNT
|
|
};
|
|
|
|
/* Thermal configuration for one temperature sensor. Temps are in degrees K.
|
|
* Zero values will be silently ignored by the thermal task.
|
|
*/
|
|
struct ec_thermal_config {
|
|
uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
|
|
uint32_t temp_fan_off; /* no active cooling needed */
|
|
uint32_t temp_fan_max; /* max active cooling needed */
|
|
} __packed;
|
|
|
|
/* Version 1 - get config for one sensor. */
|
|
struct ec_params_thermal_get_threshold_v1 {
|
|
uint32_t sensor_num;
|
|
} __packed;
|
|
/* This returns a struct ec_thermal_config */
|
|
|
|
/* Version 1 - set config for one sensor.
|
|
* Use read-modify-write for best results! */
|
|
struct ec_params_thermal_set_threshold_v1 {
|
|
uint32_t sensor_num;
|
|
struct ec_thermal_config cfg;
|
|
} __packed;
|
|
/* This returns no data */
|
|
|
|
/****************************************************************************/
|
|
|
|
/* Toggle automatic fan control */
|
|
#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
|
|
|
|
/* Get TMP006 calibration data */
|
|
#define EC_CMD_TMP006_GET_CALIBRATION 0x53
|
|
|
|
struct ec_params_tmp006_get_calibration {
|
|
uint8_t index;
|
|
} __packed;
|
|
|
|
struct ec_response_tmp006_get_calibration {
|
|
float s0;
|
|
float b0;
|
|
float b1;
|
|
float b2;
|
|
} __packed;
|
|
|
|
/* Set TMP006 calibration data */
|
|
#define EC_CMD_TMP006_SET_CALIBRATION 0x54
|
|
|
|
struct ec_params_tmp006_set_calibration {
|
|
uint8_t index;
|
|
uint8_t reserved[3]; /* Reserved; set 0 */
|
|
float s0;
|
|
float b0;
|
|
float b1;
|
|
float b2;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* MKBP - Matrix KeyBoard Protocol */
|
|
|
|
/*
|
|
* Read key state
|
|
*
|
|
* Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
|
|
* expected response size.
|
|
*/
|
|
#define EC_CMD_MKBP_STATE 0x60
|
|
|
|
/* Provide information about the matrix : number of rows and columns */
|
|
#define EC_CMD_MKBP_INFO 0x61
|
|
|
|
struct ec_response_mkbp_info {
|
|
uint32_t rows;
|
|
uint32_t cols;
|
|
uint8_t switches;
|
|
} __packed;
|
|
|
|
/* Simulate key press */
|
|
#define EC_CMD_MKBP_SIMULATE_KEY 0x62
|
|
|
|
struct ec_params_mkbp_simulate_key {
|
|
uint8_t col;
|
|
uint8_t row;
|
|
uint8_t pressed;
|
|
} __packed;
|
|
|
|
/* Configure keyboard scanning */
|
|
#define EC_CMD_MKBP_SET_CONFIG 0x64
|
|
#define EC_CMD_MKBP_GET_CONFIG 0x65
|
|
|
|
/* flags */
|
|
enum mkbp_config_flags {
|
|
EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
|
|
};
|
|
|
|
enum mkbp_config_valid {
|
|
EC_MKBP_VALID_SCAN_PERIOD = 1 << 0,
|
|
EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1,
|
|
EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3,
|
|
EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4,
|
|
EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5,
|
|
EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6,
|
|
EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7,
|
|
};
|
|
|
|
/* Configuration for our key scanning algorithm */
|
|
struct ec_mkbp_config {
|
|
uint32_t valid_mask; /* valid fields */
|
|
uint8_t flags; /* some flags (enum mkbp_config_flags) */
|
|
uint8_t valid_flags; /* which flags are valid */
|
|
uint16_t scan_period_us; /* period between start of scans */
|
|
/* revert to interrupt mode after no activity for this long */
|
|
uint32_t poll_timeout_us;
|
|
/*
|
|
* minimum post-scan relax time. Once we finish a scan we check
|
|
* the time until we are due to start the next one. If this time is
|
|
* shorter this field, we use this instead.
|
|
*/
|
|
uint16_t min_post_scan_delay_us;
|
|
/* delay between setting up output and waiting for it to settle */
|
|
uint16_t output_settle_us;
|
|
uint16_t debounce_down_us; /* time for debounce on key down */
|
|
uint16_t debounce_up_us; /* time for debounce on key up */
|
|
/* maximum depth to allow for fifo (0 = no keyscan output) */
|
|
uint8_t fifo_max_depth;
|
|
} __packed;
|
|
|
|
struct ec_params_mkbp_set_config {
|
|
struct ec_mkbp_config config;
|
|
} __packed;
|
|
|
|
struct ec_response_mkbp_get_config {
|
|
struct ec_mkbp_config config;
|
|
} __packed;
|
|
|
|
/* Run the key scan emulation */
|
|
#define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
|
|
|
|
enum ec_keyscan_seq_cmd {
|
|
EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
|
|
EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
|
|
EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
|
|
EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
|
|
EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
|
|
};
|
|
|
|
enum ec_collect_flags {
|
|
/*
|
|
* Indicates this scan was processed by the EC. Due to timing, some
|
|
* scans may be skipped.
|
|
*/
|
|
EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0,
|
|
};
|
|
|
|
struct ec_collect_item {
|
|
uint8_t flags; /* some flags (enum ec_collect_flags) */
|
|
};
|
|
|
|
struct ec_params_keyscan_seq_ctrl {
|
|
uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
|
|
union {
|
|
struct {
|
|
uint8_t active; /* still active */
|
|
uint8_t num_items; /* number of items */
|
|
/* Current item being presented */
|
|
uint8_t cur_item;
|
|
} status;
|
|
struct {
|
|
/*
|
|
* Absolute time for this scan, measured from the
|
|
* start of the sequence.
|
|
*/
|
|
uint32_t time_us;
|
|
uint8_t scan[0]; /* keyscan data */
|
|
} add;
|
|
struct {
|
|
uint8_t start_item; /* First item to return */
|
|
uint8_t num_items; /* Number of items to return */
|
|
} collect;
|
|
};
|
|
} __packed;
|
|
|
|
struct ec_result_keyscan_seq_ctrl {
|
|
union {
|
|
struct {
|
|
uint8_t num_items; /* Number of items */
|
|
/* Data for each item */
|
|
struct ec_collect_item item[0];
|
|
} collect;
|
|
};
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Temperature sensor commands */
|
|
|
|
/* Read temperature sensor info */
|
|
#define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
|
|
|
|
struct ec_params_temp_sensor_get_info {
|
|
uint8_t id;
|
|
} __packed;
|
|
|
|
struct ec_response_temp_sensor_get_info {
|
|
char sensor_name[32];
|
|
uint8_t sensor_type;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
* Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
|
|
* commands accidentally sent to the wrong interface. See the ACPI section
|
|
* below.
|
|
*/
|
|
|
|
/*****************************************************************************/
|
|
/* Host event commands */
|
|
|
|
/*
|
|
* Host event mask params and response structures, shared by all of the host
|
|
* event commands below.
|
|
*/
|
|
struct ec_params_host_event_mask {
|
|
uint32_t mask;
|
|
} __packed;
|
|
|
|
struct ec_response_host_event_mask {
|
|
uint32_t mask;
|
|
} __packed;
|
|
|
|
/* These all use ec_response_host_event_mask */
|
|
#define EC_CMD_HOST_EVENT_GET_B 0x87
|
|
#define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88
|
|
#define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89
|
|
#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
|
|
|
|
/* These all use ec_params_host_event_mask */
|
|
#define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a
|
|
#define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b
|
|
#define EC_CMD_HOST_EVENT_CLEAR 0x8c
|
|
#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
|
|
#define EC_CMD_HOST_EVENT_CLEAR_B 0x8f
|
|
|
|
/*****************************************************************************/
|
|
/* Switch commands */
|
|
|
|
/* Enable/disable LCD backlight */
|
|
#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
|
|
|
|
struct ec_params_switch_enable_backlight {
|
|
uint8_t enabled;
|
|
} __packed;
|
|
|
|
/* Enable/disable WLAN/Bluetooth */
|
|
#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
|
|
|
|
struct ec_params_switch_enable_wireless {
|
|
uint8_t enabled;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* GPIO commands. Only available on EC if write protect has been disabled. */
|
|
|
|
/* Set GPIO output value */
|
|
#define EC_CMD_GPIO_SET 0x92
|
|
|
|
struct ec_params_gpio_set {
|
|
char name[32];
|
|
uint8_t val;
|
|
} __packed;
|
|
|
|
/* Get GPIO value */
|
|
#define EC_CMD_GPIO_GET 0x93
|
|
|
|
struct ec_params_gpio_get {
|
|
char name[32];
|
|
} __packed;
|
|
struct ec_response_gpio_get {
|
|
uint8_t val;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* I2C commands. Only available when flash write protect is unlocked. */
|
|
|
|
/*
|
|
* TODO(crosbug.com/p/23570): These commands are deprecated, and will be
|
|
* removed soon. Use EC_CMD_I2C_XFER instead.
|
|
*/
|
|
|
|
/* Read I2C bus */
|
|
#define EC_CMD_I2C_READ 0x94
|
|
|
|
struct ec_params_i2c_read {
|
|
uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
|
|
uint8_t read_size; /* Either 8 or 16. */
|
|
uint8_t port;
|
|
uint8_t offset;
|
|
} __packed;
|
|
struct ec_response_i2c_read {
|
|
uint16_t data;
|
|
} __packed;
|
|
|
|
/* Write I2C bus */
|
|
#define EC_CMD_I2C_WRITE 0x95
|
|
|
|
struct ec_params_i2c_write {
|
|
uint16_t data;
|
|
uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
|
|
uint8_t write_size; /* Either 8 or 16. */
|
|
uint8_t port;
|
|
uint8_t offset;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Charge state commands. Only available when flash write protect unlocked. */
|
|
|
|
/* Force charge state machine to stop charging the battery or force it to
|
|
* discharge the battery.
|
|
*/
|
|
#define EC_CMD_CHARGE_CONTROL 0x96
|
|
#define EC_VER_CHARGE_CONTROL 1
|
|
|
|
enum ec_charge_control_mode {
|
|
CHARGE_CONTROL_NORMAL = 0,
|
|
CHARGE_CONTROL_IDLE,
|
|
CHARGE_CONTROL_DISCHARGE,
|
|
};
|
|
|
|
struct ec_params_charge_control {
|
|
uint32_t mode; /* enum charge_control_mode */
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Console commands. Only available when flash write protect is unlocked. */
|
|
|
|
/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
|
|
#define EC_CMD_CONSOLE_SNAPSHOT 0x97
|
|
|
|
/*
|
|
* Read next chunk of data from saved snapshot.
|
|
*
|
|
* Response is null-terminated string. Empty string, if there is no more
|
|
* remaining output.
|
|
*/
|
|
#define EC_CMD_CONSOLE_READ 0x98
|
|
|
|
/*****************************************************************************/
|
|
|
|
/*
|
|
* Cut off battery power output if the battery supports.
|
|
*
|
|
* For unsupported battery, just don't implement this command and lets EC
|
|
* return EC_RES_INVALID_COMMAND.
|
|
*/
|
|
#define EC_CMD_BATTERY_CUT_OFF 0x99
|
|
|
|
/*****************************************************************************/
|
|
/* USB port mux control. */
|
|
|
|
/*
|
|
* Switch USB mux or return to automatic switching.
|
|
*/
|
|
#define EC_CMD_USB_MUX 0x9a
|
|
|
|
struct ec_params_usb_mux {
|
|
uint8_t mux;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* LDOs / FETs control. */
|
|
|
|
enum ec_ldo_state {
|
|
EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
|
|
EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
|
|
};
|
|
|
|
/*
|
|
* Switch on/off a LDO.
|
|
*/
|
|
#define EC_CMD_LDO_SET 0x9b
|
|
|
|
struct ec_params_ldo_set {
|
|
uint8_t index;
|
|
uint8_t state;
|
|
} __packed;
|
|
|
|
/*
|
|
* Get LDO state.
|
|
*/
|
|
#define EC_CMD_LDO_GET 0x9c
|
|
|
|
struct ec_params_ldo_get {
|
|
uint8_t index;
|
|
} __packed;
|
|
|
|
struct ec_response_ldo_get {
|
|
uint8_t state;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Power info. */
|
|
|
|
/*
|
|
* Get power info.
|
|
*/
|
|
#define EC_CMD_POWER_INFO 0x9d
|
|
|
|
struct ec_response_power_info {
|
|
uint32_t usb_dev_type;
|
|
uint16_t voltage_ac;
|
|
uint16_t voltage_system;
|
|
uint16_t current_system;
|
|
uint16_t usb_current_limit;
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* I2C passthru command */
|
|
|
|
#define EC_CMD_I2C_PASSTHRU 0x9e
|
|
|
|
/* Slave address is 10 (not 7) bit */
|
|
#define EC_I2C_FLAG_10BIT (1 << 16)
|
|
|
|
/* Read data; if not present, message is a write */
|
|
#define EC_I2C_FLAG_READ (1 << 15)
|
|
|
|
/* Mask for address */
|
|
#define EC_I2C_ADDR_MASK 0x3ff
|
|
|
|
#define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */
|
|
#define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */
|
|
|
|
/* Any error */
|
|
#define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
|
|
|
|
struct ec_params_i2c_passthru_msg {
|
|
uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
|
|
uint16_t len; /* Number of bytes to read or write */
|
|
} __packed;
|
|
|
|
struct ec_params_i2c_passthru {
|
|
uint8_t port; /* I2C port number */
|
|
uint8_t num_msgs; /* Number of messages */
|
|
struct ec_params_i2c_passthru_msg msg[];
|
|
/* Data to write for all messages is concatenated here */
|
|
} __packed;
|
|
|
|
struct ec_response_i2c_passthru {
|
|
uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
|
|
uint8_t num_msgs; /* Number of messages processed */
|
|
uint8_t data[]; /* Data read by messages concatenated here */
|
|
} __packed;
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Debug commands for battery charging */
|
|
|
|
/*
|
|
* Dump charge state machine context.
|
|
*
|
|
* Response is a binary dump of charge state machine context.
|
|
*/
|
|
#define EC_CMD_CHARGE_DUMP 0xa0
|
|
|
|
/*
|
|
* Set maximum battery charging current.
|
|
*/
|
|
#define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
|
|
|
|
struct ec_params_current_limit {
|
|
uint32_t limit; /* in mA */
|
|
} __packed;
|
|
|
|
/*
|
|
* Set maximum external power current.
|
|
*/
|
|
#define EC_CMD_EXT_POWER_CURRENT_LIMIT 0xa2
|
|
|
|
struct ec_params_ext_power_current_limit {
|
|
uint32_t limit; /* in mA */
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* Smart battery pass-through */
|
|
|
|
/* Get / Set 16-bit smart battery registers */
|
|
#define EC_CMD_SB_READ_WORD 0xb0
|
|
#define EC_CMD_SB_WRITE_WORD 0xb1
|
|
|
|
/* Get / Set string smart battery parameters
|
|
* formatted as SMBUS "block".
|
|
*/
|
|
#define EC_CMD_SB_READ_BLOCK 0xb2
|
|
#define EC_CMD_SB_WRITE_BLOCK 0xb3
|
|
|
|
struct ec_params_sb_rd {
|
|
uint8_t reg;
|
|
} __packed;
|
|
|
|
struct ec_response_sb_rd_word {
|
|
uint16_t value;
|
|
} __packed;
|
|
|
|
struct ec_params_sb_wr_word {
|
|
uint8_t reg;
|
|
uint16_t value;
|
|
} __packed;
|
|
|
|
struct ec_response_sb_rd_block {
|
|
uint8_t data[32];
|
|
} __packed;
|
|
|
|
struct ec_params_sb_wr_block {
|
|
uint8_t reg;
|
|
uint16_t data[32];
|
|
} __packed;
|
|
|
|
/*****************************************************************************/
|
|
/* System commands */
|
|
|
|
/*
|
|
* TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
|
|
* necessarily reboot the EC. Rename to "image" or something similar?
|
|
*/
|
|
#define EC_CMD_REBOOT_EC 0xd2
|
|
|
|
/* Command */
|
|
enum ec_reboot_cmd {
|
|
EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
|
|
EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
|
|
EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */
|
|
/* (command 3 was jump to RW-B) */
|
|
EC_REBOOT_COLD = 4, /* Cold-reboot */
|
|
EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
|
|
EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */
|
|
};
|
|
|
|
/* Flags for ec_params_reboot_ec.reboot_flags */
|
|
#define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */
|
|
#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */
|
|
|
|
struct ec_params_reboot_ec {
|
|
uint8_t cmd; /* enum ec_reboot_cmd */
|
|
uint8_t flags; /* See EC_REBOOT_FLAG_* */
|
|
} __packed;
|
|
|
|
/*
|
|
* Get information on last EC panic.
|
|
*
|
|
* Returns variable-length platform-dependent panic information. See panic.h
|
|
* for details.
|
|
*/
|
|
#define EC_CMD_GET_PANIC_INFO 0xd3
|
|
|
|
/*****************************************************************************/
|
|
/*
|
|
* ACPI commands
|
|
*
|
|
* These are valid ONLY on the ACPI command/data port.
|
|
*/
|
|
|
|
/*
|
|
* ACPI Read Embedded Controller
|
|
*
|
|
* This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
|
|
*
|
|
* Use the following sequence:
|
|
*
|
|
* - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
|
|
* - Wait for EC_LPC_CMDR_PENDING bit to clear
|
|
* - Write address to EC_LPC_ADDR_ACPI_DATA
|
|
* - Wait for EC_LPC_CMDR_DATA bit to set
|
|
* - Read value from EC_LPC_ADDR_ACPI_DATA
|
|
*/
|
|
#define EC_CMD_ACPI_READ 0x80
|
|
|
|
/*
|
|
* ACPI Write Embedded Controller
|
|
*
|
|
* This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
|
|
*
|
|
* Use the following sequence:
|
|
*
|
|
* - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
|
|
* - Wait for EC_LPC_CMDR_PENDING bit to clear
|
|
* - Write address to EC_LPC_ADDR_ACPI_DATA
|
|
* - Wait for EC_LPC_CMDR_PENDING bit to clear
|
|
* - Write value to EC_LPC_ADDR_ACPI_DATA
|
|
*/
|
|
#define EC_CMD_ACPI_WRITE 0x81
|
|
|
|
/*
|
|
* ACPI Query Embedded Controller
|
|
*
|
|
* This clears the lowest-order bit in the currently pending host events, and
|
|
* sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
|
|
* event 0x80000000 = 32), or 0 if no event was pending.
|
|
*/
|
|
#define EC_CMD_ACPI_QUERY_EVENT 0x84
|
|
|
|
/* Valid addresses in ACPI memory space, for read/write commands */
|
|
/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
|
|
#define EC_ACPI_MEM_VERSION 0x00
|
|
/*
|
|
* Test location; writing value here updates test compliment byte to (0xff -
|
|
* value).
|
|
*/
|
|
#define EC_ACPI_MEM_TEST 0x01
|
|
/* Test compliment; writes here are ignored. */
|
|
#define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
|
|
/* Keyboard backlight brightness percent (0 - 100) */
|
|
#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
|
|
/* Target Fan Duty (0-100, 0xff for auto/none) */
|
|
#define EC_ACPI_MEM_FAN_DUTY 0x04
|
|
|
|
/* Current version of ACPI memory address space */
|
|
#define EC_ACPI_MEM_VERSION_CURRENT 1
|
|
|
|
|
|
/*****************************************************************************/
|
|
/*
|
|
* Special commands
|
|
*
|
|
* These do not follow the normal rules for commands. See each command for
|
|
* details.
|
|
*/
|
|
|
|
/*
|
|
* Reboot NOW
|
|
*
|
|
* This command will work even when the EC LPC interface is busy, because the
|
|
* reboot command is processed at interrupt level. Note that when the EC
|
|
* reboots, the host will reboot too, so there is no response to this command.
|
|
*
|
|
* Use EC_CMD_REBOOT_EC to reboot the EC more politely.
|
|
*/
|
|
#define EC_CMD_REBOOT 0xd1 /* Think "die" */
|
|
|
|
/*
|
|
* Resend last response (not supported on LPC).
|
|
*
|
|
* Returns EC_RES_UNAVAILABLE if there is no response available - for example,
|
|
* there was no previous command, or the previous command's response was too
|
|
* big to save.
|
|
*/
|
|
#define EC_CMD_RESEND_RESPONSE 0xdb
|
|
|
|
/*
|
|
* This header byte on a command indicate version 0. Any header byte less
|
|
* than this means that we are talking to an old EC which doesn't support
|
|
* versioning. In that case, we assume version 0.
|
|
*
|
|
* Header bytes greater than this indicate a later version. For example,
|
|
* EC_CMD_VERSION0 + 1 means we are using version 1.
|
|
*
|
|
* The old EC interface must not use commands 0dc or higher.
|
|
*/
|
|
#define EC_CMD_VERSION0 0xdc
|
|
|
|
#endif /* !__ACPI__ */
|
|
|
|
/*****************************************************************************/
|
|
/*
|
|
* Deprecated constants. These constants have been renamed for clarity. The
|
|
* meaning and size has not changed. Programs that use the old names should
|
|
* switch to the new names soon, as the old names may not be carried forward
|
|
* forever.
|
|
*/
|
|
#define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
|
|
#define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
|
|
#define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
|
|
|
|
#endif /* __CROS_EC_COMMANDS_H */
|