Files
OpenCellular/firmware/lib/cryptolib/rsa.c
Randall Spangler f8c6549159 Verified boot wrapper - replace utility functions
This is part 3 of the vboot wrapper API refactoring.  It replaces the
function calls to utility.c functions with new API calls.  (It also
fixes up some integer type mismatches in cryptolib that were causing
warnings on the H2C build; those had been fixed a while ago in H2C but
hadn't been propagated across.)

This is a re-commit of the original; I've verified it compiles on both
x86-alex and tegra2, for both vboot_reference and
vboot_reference-firmware, now that the patch from
1c1a883bc7 is checked in.

BUG=chromium-os:17006
TEST=make && make runtests, and emerged on both x86-alex and tegra2

Original-Change-Id: I771085dcdf79d9592de64f35e3b758111a80dd9f
Original-Reviewed-on: http://gerrit.chromium.org/gerrit/3263
Original-Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Randall Spangler <rspangler@chromium.org>
(cherry picked from commit bd81b3a7d3)

Change-Id: Iefdbfb3d10eb9aa385fb6dfc3bf0896f637cb64b
Reviewed-on: http://gerrit.chromium.org/gerrit/3582
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
Tested-by: Randall Spangler <rspangler@chromium.org>
2011-07-01 14:33:12 -07:00

185 lines
4.8 KiB
C

/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Implementation of RSA signature verification which uses a pre-processed
* key for computation. The code extends Android's RSA verification code to
* support multiple RSA key lengths and hash digest algorithms.
*/
#include "cryptolib.h"
#include "vboot_api.h"
#include "utility.h"
/* a[] -= mod */
static void subM(const RSAPublicKey *key, uint32_t *a) {
int64_t A = 0;
uint32_t i;
for (i = 0; i < key->len; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
/* return a[] >= mod */
static int geM(const RSAPublicKey *key, uint32_t *a) {
uint32_t i;
for (i = key->len; i;) {
--i;
if (a[i] < key->n[i]) return 0;
if (a[i] > key->n[i]) return 1;
}
return 1; /* equal */
}
/* montgomery c[] += a * b[] / R % mod */
static void montMulAdd(const RSAPublicKey *key,
uint32_t* c,
const uint32_t a,
const uint32_t* b) {
uint64_t A = UINT64_MULT32(a, b[0]) + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = UINT64_MULT32(d0, key->n[0]) + (uint32_t)A;
uint32_t i;
for (i = 1; i < key->len; ++i) {
A = (A >> 32) + UINT64_MULT32(a, b[i]) + c[i];
B = (B >> 32) + UINT64_MULT32(d0, key->n[i]) + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32) {
subM(key, c);
}
}
/* montgomery c[] = a[] * b[] / R % mod */
static void montMul(const RSAPublicKey *key,
uint32_t* c,
uint32_t* a,
uint32_t* b) {
uint32_t i;
for (i = 0; i < key->len; ++i) {
c[i] = 0;
}
for (i = 0; i < key->len; ++i) {
montMulAdd(key, c, a[i], b);
}
}
/* In-place public exponentiation. (65537}
* Input and output big-endian byte array in inout.
*/
static void modpowF4(const RSAPublicKey *key,
uint8_t* inout) {
uint32_t* a = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
uint32_t* aR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
uint32_t* aaR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
uint32_t* aaa = aaR; /* Re-use location. */
int i;
/* Convert from big endian byte array to little endian word array. */
for (i = 0; i < (int)key->len; ++i) {
uint32_t tmp =
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
(inout[((key->len - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
for (i = 0; i < 16; i+=2) {
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
}
montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
if (geM(key, aaa)) {
subM(key, aaa);
}
/* Convert to bigendian byte array */
for (i = (int)key->len - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = (uint8_t)(tmp >> 24);
*inout++ = (uint8_t)(tmp >> 16);
*inout++ = (uint8_t)(tmp >> 8);
*inout++ = (uint8_t)(tmp >> 0);
}
VbExFree(a);
VbExFree(aR);
VbExFree(aaR);
}
/* Verify a RSA PKCS1.5 signature against an expected hash.
* Returns 0 on failure, 1 on success.
*/
int RSAVerify(const RSAPublicKey *key,
const uint8_t *sig,
const uint32_t sig_len,
const uint8_t sig_type,
const uint8_t *hash) {
uint8_t* buf;
const uint8_t* padding;
int padding_len;
int success = 1;
if (!key || !sig || !hash)
return 0;
if (sig_len != (key->len * sizeof(uint32_t))) {
VBDEBUG(("Signature is of incorrect length!\n"));
return 0;
}
if (sig_type >= kNumAlgorithms) {
VBDEBUG(("Invalid signature type!\n"));
return 0;
}
if (key->len != siglen_map[sig_type] / sizeof(uint32_t)) {
VBDEBUG(("Wrong key passed in!\n"));
return 0;
}
buf = (uint8_t*) VbExMalloc(sig_len);
if (!buf)
return 0;
Memcpy(buf, sig, sig_len);
modpowF4(key, buf);
/* Determine padding to use depending on the signature type. */
padding = padding_map[sig_type];
padding_len = padding_size_map[sig_type];
/* Even though there are probably no timing issues here, we use
* SafeMemcmp() just to be on the safe side. */
/* Check pkcs1.5 padding bytes. */
if (SafeMemcmp(buf, padding, padding_len)) {
VBDEBUG(("In RSAVerify(): Padding check failed!\n"));
success = 0;
}
/* Check hash. */
if (SafeMemcmp(buf + padding_len, hash, sig_len - padding_len)) {
VBDEBUG(("In RSAVerify(): Hash check failed!\n"));
success = 0;
}
VbExFree(buf);
return success;
}