Files
OpenCellular/chip/stm32/system.c
Vic Yang 3036dcdb1e stm32f: Support hard reset
Now that we have hibernate ability, we can use this to perform a hard
reset.

BUG=chrome-os-partner:11579
TEST=Build success and working on 'snow':
       'reboot' and see reset cause is 'reset-pin soft'.
       'reboot hard' and see reset cause is 'hard'.
     Build success on 'daisy'.

Change-Id: I18132eee2f0d574d7d1674f7be25249dbe19749d
Signed-off-by: Vic Yang <victoryang@chromium.org>
Reviewed-on: https://gerrit.chromium.org/gerrit/27930
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2012-07-19 17:01:55 -07:00

277 lines
6.4 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* System module for Chrome EC : hardware specific implementation */
#include "cpu.h"
#include "registers.h"
#include "system.h"
#include "task.h"
#include "version.h"
#include "watchdog.h"
enum bkpdata_index {
BKPDATA_INDEX_SCRATCHPAD, /* General-purpose scratchpad */
BKPDATA_INDEX_WAKE, /* Wake reasons for hibernate */
BKPDATA_INDEX_SAVED_RESET_FLAGS,/* Saved reset flags */
};
/* Wake reason flags for hibernate */
#define BKPDATA_WAKE_HIBERNATE (1 << 0) /* Hibernate */
#define BKPDATA_WAKE_HARD_RESET (1 << 1) /* Hard reset */
/**
* Read backup register at specified index.
*
* @return The value of the register or 0 if invalid index.
*/
static uint16_t bkpdata_read(enum bkpdata_index index)
{
if (index < 0 || index >= STM32_BKP_ENTRIES)
return 0;
return STM32_BKP_DATA(index);
}
/**
* Write hibernate register at specified index.
*
* @return nonzero if error.
*/
static int bkpdata_write(enum bkpdata_index index, uint16_t value)
{
if (index < 0 || index >= STM32_BKP_ENTRIES)
return EC_ERROR_INVAL;
STM32_BKP_DATA(index) = value;
return EC_SUCCESS;
}
static void check_reset_cause(void)
{
uint32_t flags = 0;
uint32_t raw_cause = STM32_RCC_CSR;
uint32_t pwr_status = STM32_PWR_CSR;
uint32_t bkp_wake_flags = bkpdata_read(BKPDATA_INDEX_WAKE);
/* Clear the hardware reset cause by setting the RMVF bit */
STM32_RCC_CSR |= 1 << 24;
/* Clear SBF in PWR_CSR */
STM32_PWR_CR |= 1 << 3;
/* Clear hibernate wake flags */
bkpdata_write(BKPDATA_INDEX_WAKE, 0);
if (raw_cause & 0x60000000) {
/* IWDG or WWDG */
flags |= RESET_FLAG_WATCHDOG;
}
if (raw_cause & 0x10000000)
flags |= RESET_FLAG_SOFT;
if (raw_cause & 0x08000000)
flags |= RESET_FLAG_POWER_ON;
if (raw_cause & 0x04000000)
flags |= RESET_FLAG_RESET_PIN;
if (pwr_status & 0x00000002) {
/* Hibernation and waked */
if (bkp_wake_flags & BKPDATA_WAKE_HIBERNATE)
flags |= RESET_FLAG_HIBERNATE;
/* Hibernation caused by software-triggered hard reset */
if (bkp_wake_flags & BKPDATA_WAKE_HARD_RESET)
flags |= RESET_FLAG_HARD;
}
if (!flags && (raw_cause & 0xfe000000))
flags |= RESET_FLAG_OTHER;
/* Restore then clear saved reset flags */
flags |= bkpdata_read(BKPDATA_INDEX_SAVED_RESET_FLAGS);
bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS, 0);
system_set_reset_flags(flags);
}
#ifdef CHIP_VARIANT_stm32f100
static inline void wait_for_RTOFF(void)
{
while ((STM32_RTC_CRL & 0x20) == 0)
;
}
static void __enter_hibernate_stm32f100(uint32_t seconds, uint32_t milliseconds,
uint32_t flags)
{
/* Store the hibernate flags */
bkpdata_write(BKPDATA_INDEX_WAKE, flags);
/* Enter RTC configuration mode */
wait_for_RTOFF();
STM32_RTC_CRL |= 0x10;
wait_for_RTOFF();
/* Set signal period to 0.992 ms. We want 1 ms, but 0.8% error is
* fine. */
STM32_RTC_PRLL = 0x20;
wait_for_RTOFF();
/* Setting the alarm register */
milliseconds = milliseconds + seconds * 1000;
STM32_RTC_ALRH = milliseconds >> 16;
wait_for_RTOFF();
STM32_RTC_ALRL = milliseconds & 0xffff;
wait_for_RTOFF();
STM32_RTC_CNTL = 0;
wait_for_RTOFF();
STM32_RTC_CNTH = 0;
wait_for_RTOFF();
/* Enable RTC alarm interrupt */
STM32_RTC_CRH |= 0x2;
wait_for_RTOFF();
/* Clear RTC alarm flag */
STM32_RTC_CRL &= ~0x2;
wait_for_RTOFF();
/* Exit RTC configuration mode */
STM32_RTC_CRL &= ~0x10;
wait_for_RTOFF();
/* Delay watchdog as long as possible. (~26s)
* TODO: Find a way to disable watchdog, perhaps through reset? */
STM32_IWDG_KR = 0x5555;
STM32_IWDG_PR = 0x6;
STM32_IWDG_RLR = 0xfff;
STM32_IWDG_KR = 0xcccc;
watchdog_reload();
/* Set deep sleep bit */
CPU_SCB_SYSCTRL |= 0x4;
/* Set power down deep sleep bit and clear wakeup flag */
STM32_PWR_CR |= 0x6;
/* Wait for wakeup flag cleared */
while (STM32_PWR_CSR & 0x1)
;
asm volatile("wfi");
}
#endif
void system_hibernate(uint32_t seconds, uint32_t microseconds)
{
/* we are going to hibernate ... */
#ifdef CHIP_VARIANT_stm32f100
__enter_hibernate_stm32f100(seconds, (microseconds + 999) / 1000,
BKPDATA_WAKE_HIBERNATE);
#else
while (1)
/* NOT IMPLEMENTED */;
#endif
}
int system_pre_init(void)
{
/* enable clock on Power module */
STM32_RCC_APB1ENR |= 1 << 28;
/* enable backup registers */
STM32_RCC_APB1ENR |= 1 << 27;
/* Enable access to RCC CSR register and RTC backup registers */
STM32_PWR_CR |= 1 << 8;
/* switch on LSI */
STM32_RCC_CSR |= 1 << 0;
/* Wait for LSI to be ready */
while (!(STM32_RCC_CSR & (1 << 1)))
;
/* re-configure RTC if needed */
#if defined(CHIP_VARIANT_stm32l15x)
if ((STM32_RCC_CSR & 0x00C30000) != 0x00420000) {
/* the RTC settings are bad, we need to reset it */
STM32_RCC_CSR |= 0x00800000;
/* Enable RTC and use LSI as clock source */
STM32_RCC_CSR = (STM32_RCC_CSR & ~0x00C30000) | 0x00420000;
}
#elif defined(CHIP_VARIANT_stm32f100)
if ((STM32_RCC_BDCR & 0x00018300) != 0x00008200) {
/* the RTC settings are bad, we need to reset it */
STM32_RCC_BDCR |= 0x00010000;
/* Enable RTC and use LSI as clock source */
STM32_RCC_BDCR = (STM32_RCC_BDCR & ~0x00018300) | 0x00008200;
}
#else
#error "Unsupported chip variant"
#endif
check_reset_cause();
return EC_SUCCESS;
}
void system_reset(int flags)
{
/* Disable interrupts to avoid task swaps during reboot */
interrupt_disable();
/* Save current reset reason if necessary */
if (flags & SYSTEM_RESET_PRESERVE_FLAGS)
bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS,
system_get_reset_flags());
else
bkpdata_write(BKPDATA_INDEX_SAVED_RESET_FLAGS, 0);
if (flags & SYSTEM_RESET_HARD) {
#ifdef CHIP_VARIANT_stm32f100
/* Bounce through hibernate to trigger a hard reboot */
__enter_hibernate_stm32f100(0, 50, BKPDATA_WAKE_HARD_RESET);
#else
/* Hard reset not supported yet. Using soft reset. */
CPU_NVIC_APINT = 0x05fa0004;
#endif
} else
CPU_NVIC_APINT = 0x05fa0004;
/* Spin and wait for reboot; should never return */
while (1)
;
}
int system_set_scratchpad(uint32_t value)
{
/* Check if value fits in 16 bits */
if (value & 0xffff0000)
return EC_ERROR_INVAL;
return bkpdata_write(BKPDATA_INDEX_SCRATCHPAD, (uint16_t)value);
}
uint32_t system_get_scratchpad(void)
{
return (uint32_t)bkpdata_read(BKPDATA_INDEX_SCRATCHPAD);
}
const char *system_get_chip_vendor(void)
{
return "stm";
}
const char *system_get_chip_name(void)
{
return STRINGIFY(CHIP_VARIANT);
}
const char *system_get_chip_revision(void)
{
return "";
}