Files
OpenCellular/common/thermal.c
Vincent Palatin f9c2d375c3 link: update fan policy
As per James advice :
- increase fan speed at low temperature up to maximum "silent RPM",
this will give us more margin for later operations.
- lower the maximum fan RPM threshold to 86 C to try to lower CPU
  temperature impact on skin temp.
- do not take into account "object" temp sensors, they are too random
  at the moment.

Signed-off-by: Vincent Palatin <vpalatin@chromium.org>

BUG=None
TEST=adhoc

Change-Id: I3b60570e33f82e4015c6588d9e2ae538a33ad14f
Reviewed-on: https://gerrit.chromium.org/gerrit/27921
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Tested-by: Vincent Palatin <vpalatin@chromium.org>
Commit-Ready: Vincent Palatin <vpalatin@chromium.org>
2012-07-19 20:41:53 -07:00

328 lines
8.4 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Thermal engine module for Chrome EC */
#include "chipset.h"
#include "common.h"
#include "console.h"
#include "gpio.h"
#include "host_command.h"
#include "pwm.h"
#include "task.h"
#include "temp_sensor.h"
#include "thermal.h"
#include "timer.h"
#include "util.h"
#include "x86_power.h"
/* Defined in board_temp_sensor.c. Must be in the same order as
* in enum temp_sensor_id.
*/
extern const struct temp_sensor_t temp_sensors[TEMP_SENSOR_COUNT];
/* Temperature threshold configuration. Must be in the same order as in
* enum temp_sensor_type. Threshold values for overheated action first.
* Followed by fan speed stepping thresholds. */
static struct thermal_config_t thermal_config[TEMP_SENSOR_TYPE_COUNT] = {
/* TEMP_SENSOR_TYPE_CPU */
{THERMAL_CONFIG_WARNING_ON_FAIL,
{368, 373, 383, 327, 335, 343, 351, 359} } ,
/* TEMP_SENSOR_TYPE_BOARD */
{THERMAL_CONFIG_NO_FLAG, {THERMAL_THRESHOLD_DISABLE_ALL}},
/* TEMP_SENSOR_TYPE_CASE */
{THERMAL_CONFIG_NO_FLAG, {341, THERMAL_THRESHOLD_DISABLE, 353,
THERMAL_THRESHOLD_DISABLE, THERMAL_THRESHOLD_DISABLE,
THERMAL_THRESHOLD_DISABLE, THERMAL_THRESHOLD_DISABLE,
THERMAL_THRESHOLD_DISABLE} },
};
/* Fan speed settings. */
/* Real max RPM is about 9300. */
static const int fan_speed[THERMAL_FAN_STEPS + 1] = {0, 3000, 4575, 6150,
7725, -1};
/* Number of consecutive overheated events for each temperature sensor. */
static int8_t ot_count[TEMP_SENSOR_COUNT][THRESHOLD_COUNT + THERMAL_FAN_STEPS];
/* Flag that indicate if each threshold is reached.
* Note that higher threshold reached does not necessarily mean lower thresholds
* are reached (since we can disable any threshold.) */
static int8_t overheated[THRESHOLD_COUNT + THERMAL_FAN_STEPS];
static int8_t *fan_threshold_reached = overheated + THRESHOLD_COUNT;
static int fan_ctrl_on = 1;
int thermal_set_threshold(enum temp_sensor_type type, int threshold_id, int value)
{
if (type < 0 || type >= TEMP_SENSOR_TYPE_COUNT)
return -1;
if (threshold_id < 0 ||
threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
return -1;
if (value < 0)
return -1;
thermal_config[type].thresholds[threshold_id] = value;
return EC_SUCCESS;
}
int thermal_get_threshold(enum temp_sensor_type type, int threshold_id)
{
if (type < 0 || type >= TEMP_SENSOR_TYPE_COUNT)
return -1;
if (threshold_id < 0 ||
threshold_id >= THRESHOLD_COUNT + THERMAL_FAN_STEPS)
return -1;
return thermal_config[type].thresholds[threshold_id];
}
int thermal_toggle_auto_fan_ctrl(int auto_fan_on)
{
fan_ctrl_on = auto_fan_on;
return EC_SUCCESS;
}
static void smi_overheated_warning(void)
{
host_set_single_event(EC_HOST_EVENT_THERMAL_OVERLOAD);
}
static void smi_sensor_failure_warning(void)
{
host_set_single_event(EC_HOST_EVENT_THERMAL);
}
/* TODO: When we need different overheated action for different boards,
* move these action to board-specific file. (e.g. board_thermal.c)
*/
static void overheated_action(void)
{
if (overheated[THRESHOLD_POWER_DOWN]) {
cprintf(CC_CHIPSET,
"[%T critical temperature; shutting down]\n");
x86_power_force_shutdown();
return;
}
if (overheated[THRESHOLD_CPU_DOWN])
x86_power_cpu_overheated(1);
else
x86_power_cpu_overheated(0);
if (overheated[THRESHOLD_WARNING]) {
smi_overheated_warning();
chipset_throttle_cpu(1);
}
else
chipset_throttle_cpu(0);
if (fan_ctrl_on) {
int i;
for (i = THERMAL_FAN_STEPS - 1; i >= 0; --i)
if (fan_threshold_reached[i])
break;
pwm_set_fan_target_rpm(fan_speed[i + 1]);
}
}
/* Update counter and check if the counter has reached delay limit.
* Note that we have various delay period to prevent one error value triggering
* overheated action. */
static inline void update_and_check_stat(int temp,
int sensor_id,
int threshold_id)
{
enum temp_sensor_type type = temp_sensors[sensor_id].type;
const struct thermal_config_t *config = thermal_config + type;
const int16_t threshold = config->thresholds[threshold_id];
const int delay = temp_sensors[sensor_id].action_delay_sec;
if (threshold > 0 && temp >= threshold) {
++ot_count[sensor_id][threshold_id];
if (ot_count[sensor_id][threshold_id] >= delay) {
ot_count[sensor_id][threshold_id] = delay;
overheated[threshold_id] = 1;
}
}
else if (ot_count[sensor_id][threshold_id] >= delay &&
temp >= threshold - 3) {
/* Once the threshold is reached, only if the temperature
* drops to 3 degrees below threshold do we deassert
* overheated signal. This is to prevent temperature
* oscillating around the threshold causing threshold
* keep being triggered. */
overheated[threshold_id] = 1;
} else
ot_count[sensor_id][threshold_id] = 0;
}
static void thermal_process(void)
{
int i, j;
int cur_temp;
int flag;
for (i = 0; i < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++i)
overheated[i] = 0;
for (i = 0; i < TEMP_SENSOR_COUNT; ++i) {
enum temp_sensor_type type = temp_sensors[i].type;
if (type == TEMP_SENSOR_TYPE_IGNORED)
continue;
flag = thermal_config[type].config_flags;
if (!temp_sensor_powered(i))
continue;
cur_temp = temp_sensor_read(i);
/* Sensor failure. */
if (cur_temp == -1) {
if (flag & THERMAL_CONFIG_WARNING_ON_FAIL)
smi_sensor_failure_warning();
continue;
}
for (j = 0; j < THRESHOLD_COUNT + THERMAL_FAN_STEPS; ++j)
update_and_check_stat(cur_temp, i, j);
}
overheated_action();
}
void thermal_task(void)
{
while (1) {
thermal_process();
usleep(1000000);
}
}
/*****************************************************************************/
/* Console commands */
static void print_thermal_config(enum temp_sensor_type type)
{
const struct thermal_config_t *config = thermal_config + type;
ccprintf("Sensor Type %d:\n", type);
ccprintf("\tWarning: %d K\n",
config->thresholds[THRESHOLD_WARNING]);
ccprintf("\tCPU Down: %d K\n",
config->thresholds[THRESHOLD_CPU_DOWN]);
ccprintf("\tPower Down: %d K\n",
config->thresholds[THRESHOLD_POWER_DOWN]);
}
static void print_fan_stepping(enum temp_sensor_type type)
{
const struct thermal_config_t *config = thermal_config + type;
int i;
ccprintf("Sensor Type %d:\n", type);
ccprintf("\tLowest speed: %d RPM\n", fan_speed[0]);
for (i = 0; i < THERMAL_FAN_STEPS; ++i)
ccprintf("\t%3d K: %d RPM\n",
config->thresholds[THRESHOLD_COUNT + i],
fan_speed[i+1]);
}
static int command_thermal_config(int argc, char **argv)
{
char *e;
int sensor_type, threshold_id, value;
if (argc != 2 && argc != 4)
return EC_ERROR_PARAM_COUNT;
sensor_type = strtoi(argv[1], &e, 0);
if (*e || sensor_type < 0 || sensor_type >= TEMP_SENSOR_TYPE_COUNT)
return EC_ERROR_PARAM1;
if (argc == 2) {
print_thermal_config(sensor_type);
return EC_SUCCESS;
}
threshold_id = strtoi(argv[2], &e, 0);
if (*e || threshold_id < 0 || threshold_id >= THRESHOLD_COUNT)
return EC_ERROR_PARAM2;
value = strtoi(argv[3], &e, 0);
if (*e || value < 0)
return EC_ERROR_PARAM3;
thermal_config[sensor_type].thresholds[threshold_id] = value;
ccprintf("Setting threshold %d of sensor type %d to %d\n",
threshold_id, sensor_type, value);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalconf, command_thermal_config,
"sensortype [threshold_id temp]",
"Get/set thermal threshold temp",
NULL);
static int command_fan_config(int argc, char **argv)
{
char *e;
int sensor_type, stepping_id, value;
if (argc != 2 && argc != 4)
return EC_ERROR_PARAM_COUNT;
sensor_type = strtoi(argv[1], &e, 0);
if ((e && *e) || sensor_type < 0 ||
sensor_type >= TEMP_SENSOR_TYPE_COUNT)
return EC_ERROR_PARAM1;
if (argc == 2) {
print_fan_stepping(sensor_type);
return EC_SUCCESS;
}
stepping_id = strtoi(argv[2], &e, 0);
if ((e && *e) || stepping_id < 0 || stepping_id >= THERMAL_FAN_STEPS)
return EC_ERROR_PARAM2;
value = strtoi(argv[3], &e, 0);
if (*e || value < 0)
return EC_ERROR_PARAM3;
thermal_config[sensor_type].thresholds[THRESHOLD_COUNT + stepping_id] =
value;
ccprintf("Setting fan step %d of sensor type %d to %d K\n",
stepping_id, sensor_type, value);
return EC_SUCCESS;
}
DECLARE_CONSOLE_COMMAND(thermalfan, command_fan_config,
"sensortype [threshold_id rpm]",
"Get/set thermal threshold fan rpm",
NULL);
static int command_thermal_auto_fan_ctrl(int argc, char **argv)
{
return thermal_toggle_auto_fan_ctrl(1);
}
DECLARE_CONSOLE_COMMAND(autofan, command_thermal_auto_fan_ctrl,
NULL,
"Enable thermal fan control",
NULL);