Files
OpenCellular/util/ectool.c
Randall Spangler 900c0215b4 Add hash support
EC computes a SHA-256 hash of its RW code on boot.  Also adds host and
console commands to tell the EC to recompute the hash, or hash a
different section of flash memory.

BUG=chrome-os-partner:10777
TEST=manual

1) ectool echash -> should match what the EC precomputed
2a) ectool echash recalc 0 0x10000 5
2b) on EC console, 'hash 0 0x10000 5'
2c) results should agree
3a) on ec console, 'hash 0 0x3e000' then quickly 'hash abort'
3b) ectool echash -> status should be unavailable
4) ectool echash start 0 0x3e000 6 && ectool echash && ectool echash abort && sleep 2 && ectool echash
status should be busy, then unavailable

Signed-off-by: Randall Spangler <rspangler@chromium.org>
Change-Id: I6806d7b4d4dca3a74f476092551b4dba875d558e
Reviewed-on: https://gerrit.chromium.org/gerrit/26023
2012-06-25 15:37:42 -07:00

1769 lines
39 KiB
C

/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/io.h>
#include <unistd.h>
#include "battery.h"
#include "board.h"
#include "comm-host.h"
#include "ec_commands.h"
#include "lightbar.h"
#include "system.h"
#include "vboot.h"
/* Handy tricks */
#define BUILD_ASSERT(cond) ((void)sizeof(char[1 - 2*!(cond)]))
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
/* Don't use a macro where an inline will do... */
static inline int MIN(int a, int b) { return a < b ? a : b; }
const char help_str[] =
"Commands:\n"
" autofanctrl <on>\n"
" Turn on automatic fan speed control.\n"
" backlight <enabled>\n"
" Enable/disable LCD backlight\n"
" battery\n"
" Prints battery info\n"
" chipinfo\n"
" Prints chip info\n"
" echash [CMDS]\n"
" Various EC hash commands\n"
" eventclear <mask>\n"
" Clears EC host events flags where mask has bits set\n"
" eventget\n"
" Prints raw EC host event flags\n"
" eventgetscimask\n"
" Prints SCI mask for EC host events\n"
" eventgetsmimask\n"
" Prints SMI mask for EC host events\n"
" eventgetwakemask\n"
" Prints wake mask for EC host events\n"
" eventsetscimask <mask>\n"
" Sets the SCI mask for EC host events\n"
" eventsetsmimask <mask>\n"
" Sets the SMI mask for EC host events\n"
" eventsetwakemask <mask>\n"
" Sets the wake mask for EC host events\n"
" fanduty <percent>\n"
" Forces the fan PWM to a constant duty cycle\n"
" flasherase <offset> <size>\n"
" Erases EC flash\n"
" flashinfo\n"
" Prints information on the EC flash\n"
" flashread <offset> <size> <outfile>\n"
" Reads from EC flash to a file\n"
" flashwrite <offset> <infile>\n"
" Writes to EC flash from a file\n"
" hello\n"
" Checks for basic communication with EC\n"
" kbpress\n"
" Simulate key press\n"
" lightbar [CMDS]\n"
" Various lightbar control commands\n"
" pstoreinfo\n"
" Prints information on the EC host persistent storage\n"
" pstoreread <offset> <size> <outfile>\n"
" Reads from EC host persistent storage to a file\n"
" pstorewrite <offset> <infile>\n"
" Writes to EC host persistent storage from a file\n"
" pwmgetfanrpm\n"
" Prints current fan RPM\n"
" pwmgetkblight\n"
" Prints current keyboard backlight percent\n"
" pwmsetfanrpm <targetrpm>\n"
" Set target fan RPM\n"
" pwmsetkblight <percent>\n"
" Set keyboard backlight in percent\n"
" queryec\n"
" Does an ACPI Query Embedded Controller command\n"
" readtest <patternoffset> <size>\n"
" Reads a pattern from the EC via LPC\n"
" reboot_ec <RO|A|B> [at-shutdown]\n"
" Reboot EC to RO or RW A/B\n"
" sertest\n"
" Serial output test for COM2\n"
" switches\n"
" Prints current EC switch positions\n"
" temps <sensorid>\n"
" Print temperature.\n"
" tempsinfo <sensorid>\n"
" Print temperature sensor info.\n"
" thermalget <sensor_id> <threshold_id>\n"
" Get the threshold temperature value from thermal engine.\n"
" thermalset <sensor_id> <threshold_id> <value>\n"
" Set the threshold temperature value for thermal engine.\n"
" usbchargemode <port> <mode>\n"
" Set USB charging mode\n"
" vboot [VAL]\n"
" Get or set vboot flags\n"
" version\n"
" Prints EC version\n"
" wireless <mask>\n"
" Enable/disable WLAN/Bluetooth radio\n"
"\n"
"Not working for you? Make sure LPC I/O is configured:\n"
" pci_write32 0 0x1f 0 0x88 0x00fc0801\n"
" pci_write32 0 0x1f 0 0x8c 0x00fc0901\n"
" pci_write16 0 0x1f 0 0x80 0x0010\n"
" pci_write16 0 0x1f 0 0x82 0x3d01\n"
"";
/* Write a buffer to the file. Return non-zero if error. */
static int write_file(const char *filename, const char *buf, int size)
{
FILE *f;
int i;
/* Write to file */
f = fopen(filename, "wb");
if (!f) {
perror("Error opening output file");
return -1;
}
i = fwrite(buf, 1, size, f);
fclose(f);
if (i != size) {
perror("Error writing to file");
return -1;
}
return 0;
}
/* Read a file into a buffer. Sets *size to the size of the buffer. Returns
* the buffer, which must be freed with free() by the caller. Returns NULL if
* error. */
static char *read_file(const char *filename, int *size)
{
FILE *f = fopen(filename, "rb");
char *buf;
int i;
if (!f) {
perror("Error opening input file");
return NULL;
}
fseek(f, 0, SEEK_END);
*size = ftell(f);
rewind(f);
if (*size > 0x100000) {
fprintf(stderr, "File seems unreasonably large\n");
fclose(f);
return NULL;
}
buf = (char *)malloc(*size);
if (!buf) {
fprintf(stderr, "Unable to allocate buffer.\n");
fclose(f);
return NULL;
}
printf("Reading %d bytes from %s...\n", *size, filename);
i = fread(buf, 1, *size, f);
fclose(f);
if (i != *size) {
perror("Error reading file");
free(buf);
return NULL;
}
return buf;
}
int is_string_printable(const char *buf)
{
while (*buf) {
if (!isprint(*buf))
return 0;
buf++;
}
return 1;
}
/* Check SBS numerical value range */
int is_battery_range(int val)
{
return (val >= 0 && val <= 65535) ? 1 : 0;
}
void print_help(const char *prog)
{
printf("Usage: %s <command> [params]\n\n", prog);
puts(help_str);
}
int cmd_hello(int argc, char *argv[])
{
struct ec_params_hello p;
struct ec_response_hello r;
int rv;
p.in_data = 0xa0b0c0d0;
rv = ec_command(EC_CMD_HELLO, &p, sizeof(p), &r, sizeof(r));
if (rv)
return rv;
if (r.out_data != 0xa1b2c3d4) {
fprintf(stderr, "Expected response 0x%08x, got 0x%08x\n",
0xa1b2c3d4, r.out_data);
return -1;
}
printf("EC says hello!\n");
return 0;
}
int cmd_version(int argc, char *argv[])
{
static const char * const fw_copies[] = {"unknown", "RO", "A", "B"};
struct ec_response_get_version r;
struct ec_response_get_build_info r2;
int rv;
rv = ec_command(EC_CMD_GET_VERSION, NULL, 0, &r, sizeof(r));
if (rv)
return rv;
rv = ec_command(EC_CMD_GET_BUILD_INFO,
NULL, 0, &r2, sizeof(r2));
if (rv)
return rv;
/* Ensure versions are null-terminated before we print them */
r.version_string_ro[sizeof(r.version_string_ro) - 1] = '\0';
r.version_string_rw_a[sizeof(r.version_string_rw_a) - 1] = '\0';
r.version_string_rw_b[sizeof(r.version_string_rw_b) - 1] = '\0';
r2.build_string[sizeof(r2.build_string) - 1] = '\0';
/* Print versions */
printf("RO version: %s\n", r.version_string_ro);
printf("RW-A version: %s\n", r.version_string_rw_a);
printf("RW-B version: %s\n", r.version_string_rw_b);
printf("Firmware copy: %s\n",
(r.current_image < ARRAY_SIZE(fw_copies) ?
fw_copies[r.current_image] : "?"));
printf("Build info: %s\n", r2.build_string);
return 0;
}
int cmd_read_test(int argc, char *argv[])
{
struct ec_params_read_test p;
struct ec_response_read_test r;
int offset, size;
int errors = 0;
int rv;
int i;
char *e;
char *buf;
uint32_t *b;
if (argc < 3) {
fprintf(stderr, "Usage: %s <pattern_offset> <size>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
size = strtol(argv[2], &e, 0);
if ((e && *e) || size <= 0 || size > 0x100000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Reading %d bytes with pattern offset 0x%x...\n", size, offset);
buf = (char *)malloc(size);
if (!buf) {
fprintf(stderr, "Unable to allocate buffer.\n");
return -1;
}
/* Read data in chunks */
for (i = 0; i < size; i += sizeof(r.data)) {
p.offset = offset + i / sizeof(uint32_t);
p.size = MIN(size - i, sizeof(r.data));
rv = ec_command(EC_CMD_READ_TEST, &p, sizeof(p),
&r, sizeof(r));
if (rv) {
fprintf(stderr, "Read error at offset %d\n", i);
free(buf);
return -1;
}
memcpy(buf + i, r.data, p.size);
}
/* Check data */
for (i = 0, b = (uint32_t *)buf; i < size / 4; i++, b++) {
if (*b != i + offset) {
printf("Mismatch at byte offset 0x%x: "
"expected 0x%08x, got 0x%08x\n",
(int)(i * sizeof(uint32_t)), i + offset, *b);
errors++;
}
}
free(buf);
if (errors) {
printf("Found %d errors\n", errors);
return -1;
}
printf("done.\n");
return 0;
}
int cmd_reboot_ec(int argc, char *argv[])
{
struct ec_params_reboot_ec p;
int i;
if (argc < 2) {
/*
* No params specified so tell the EC to reboot immediately.
* That reboots the AP as well, so unlikely we'll be around
* to see a return code from this...
*/
return ec_command(EC_CMD_REBOOT, NULL, 0, NULL, 0);
}
/* Parse command */
if (!strcmp(argv[1], "cancel"))
p.cmd = EC_REBOOT_CANCEL;
else if (!strcmp(argv[1], "RO"))
p.cmd = EC_REBOOT_JUMP_RO;
else if (!strcmp(argv[1], "A"))
p.cmd = EC_REBOOT_JUMP_RW_A;
else if (!strcmp(argv[1], "B"))
p.cmd = EC_REBOOT_JUMP_RW_B;
else if (!strcmp(argv[1], "cold"))
p.cmd = EC_REBOOT_COLD;
else {
fprintf(stderr, "Unknown command: %s\n", argv[1]);
return -1;
}
/* Parse flags, if any */
p.flags = 0;
for (i = 2; i < argc; i++) {
if (!strcmp(argv[i], "at-shutdown"))
p.flags |= EC_REBOOT_FLAG_ON_AP_SHUTDOWN;
else {
fprintf(stderr, "Unknown flag: %s\n", argv[i]);
return -1;
}
}
return ec_command(EC_CMD_REBOOT_EC, &p, sizeof(p), NULL, 0);
}
int cmd_flash_info(int argc, char *argv[])
{
struct ec_response_flash_info r;
int rv;
rv = ec_command(EC_CMD_FLASH_INFO, NULL, 0, &r, sizeof(r));
if (rv)
return rv;
printf("FlashSize %d\nWriteSize %d\nEraseSize %d\nProtectSize %d\n",
r.flash_size, r.write_block_size, r.erase_block_size,
r.protect_block_size);
return 0;
}
int cmd_flash_read(int argc, char *argv[])
{
struct ec_params_flash_read p;
struct ec_response_flash_read r;
int offset, size;
int rv;
int i;
char *e;
char *buf;
if (argc < 4) {
fprintf(stderr,
"Usage: %s <offset> <size> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x100000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
size = strtol(argv[2], &e, 0);
if ((e && *e) || size <= 0 || size > 0x100000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Reading %d bytes at offset %d...\n", size, offset);
buf = (char *)malloc(size);
if (!buf) {
fprintf(stderr, "Unable to allocate buffer.\n");
return -1;
}
/* Read data in chunks */
for (i = 0; i < size; i += sizeof(r.data)) {
p.offset = offset + i;
p.size = MIN(size - i, sizeof(r.data));
rv = ec_command(EC_CMD_FLASH_READ,
&p, sizeof(p), &r, sizeof(r));
if (rv) {
fprintf(stderr, "Read error at offset %d\n", i);
free(buf);
return -1;
}
memcpy(buf + i, r.data, p.size);
}
rv = write_file(argv[3], buf, size);
free(buf);
if (rv)
return -1;
printf("done.\n");
return 0;
}
int cmd_flash_write(int argc, char *argv[])
{
struct ec_params_flash_write p;
int offset, size;
int rv;
int i;
char *e;
char *buf;
if (argc < 3) {
fprintf(stderr, "Usage: %s <offset> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x100000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
/* Read the input file */
buf = read_file(argv[2], &size);
if (!buf)
return -1;
printf("Writing to offset %d...\n", offset);
/* Write data in chunks */
for (i = 0; i < size; i += sizeof(p.data)) {
p.offset = offset + i;
p.size = MIN(size - i, sizeof(p.data));
memcpy(p.data, buf + i, p.size);
rv = ec_command(EC_CMD_FLASH_WRITE, &p, sizeof(p), NULL, 0);
if (rv) {
fprintf(stderr, "Write error at offset %d\n", i);
free(buf);
return -1;
}
}
free(buf);
printf("done.\n");
return 0;
}
int cmd_flash_erase(int argc, char *argv[])
{
struct ec_params_flash_erase p;
char *e;
if (argc < 3) {
fprintf(stderr, "Usage: %s <offset> <size>\n", argv[0]);
return -1;
}
p.offset = strtol(argv[1], &e, 0);
if ((e && *e) || p.offset < 0 || p.offset > 0x100000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
p.size = strtol(argv[2], &e, 0);
if ((e && *e) || p.size <= 0 || p.size > 0x100000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Erasing %d bytes at offset %d...\n", p.size, p.offset);
if (ec_command(EC_CMD_FLASH_ERASE, &p, sizeof(p), NULL, 0))
return -1;
printf("done.\n");
return 0;
}
int cmd_serial_test(int argc, char *argv[])
{
const char *c = "COM2 sample serial output from host!\r\n";
printf("Writing sample serial output to COM2\n");
while (*c) {
/* Wait for space in transmit FIFO */
while (!(inb(0x2fd) & 0x20)) {}
/* Put the next character */
outb(*c++, 0x2f8);
}
printf("done.\n");
return 0;
}
int cmd_temperature(int argc, char *argv[])
{
int rv;
int id;
char *e;
if (argc != 2) {
fprintf(stderr, "Usage: %s <sensorid>\n", argv[0]);
return -1;
}
id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor ID.\n");
return -1;
}
/* Currently we only store up to 16 temperature sensor data in
* mapped memory. */
if (id >= 16) {
printf("Sensor with ID greater than 16 unsupported.\n");
return -1;
}
printf("Reading temperature...");
rv = read_mapped_mem8(EC_MEMMAP_TEMP_SENSOR + id);
if (rv == 0xff) {
printf("Sensor not present\n");
return -1;
} else if (rv == 0xfe) {
printf("Error\n");
return -1;
} else if (rv == 0xfd) {
printf("Sensor disabled/unpowered\n");
return -1;
} else {
printf("%d\n", rv + EC_TEMP_SENSOR_OFFSET);
return 0;
}
}
int cmd_temp_sensor_info(int argc, char *argv[])
{
struct ec_params_temp_sensor_get_info p;
struct ec_response_temp_sensor_get_info r;
int rv;
char *e;
if (argc != 2) {
fprintf(stderr, "Usage: %s <sensorid>\n", argv[0]);
return -1;
}
p.id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor ID.\n");
return -1;
}
rv = ec_command(EC_CMD_TEMP_SENSOR_GET_INFO,
&p, sizeof(p), &r, sizeof(r));
if (rv)
return rv;
printf("Sensor name: %s\n", r.sensor_name);
printf("Sensor type: %d\n", r.sensor_type);
return 0;
}
int cmd_thermal_get_threshold(int argc, char *argv[])
{
struct ec_params_thermal_get_threshold p;
struct ec_response_thermal_get_threshold r;
char *e;
int rv;
if (argc != 3) {
fprintf(stderr,
"Usage: %s <sensortypeid> <thresholdid>\n", argv[0]);
return -1;
}
p.sensor_type = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor type ID.\n");
return -1;
}
p.threshold_id = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad threshold ID.\n");
return -1;
}
rv = ec_command(EC_CMD_THERMAL_GET_THRESHOLD,
&p, sizeof(p), &r, sizeof(r));
if (rv)
return rv;
if (r.value < 0)
return -1;
printf("Threshold %d for sensor type %d is %d K.\n",
p.threshold_id, p.sensor_type, r.value);
return 0;
}
int cmd_thermal_set_threshold(int argc, char *argv[])
{
struct ec_params_thermal_set_threshold p;
char *e;
int rv;
if (argc != 4) {
fprintf(stderr,
"Usage: %s <sensortypeid> <thresholdid> <value>\n",
argv[0]);
return -1;
}
p.sensor_type = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor type ID.\n");
return -1;
}
p.threshold_id = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad threshold ID.\n");
return -1;
}
p.value = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad threshold value.\n");
return -1;
}
rv = ec_command(EC_CMD_THERMAL_SET_THRESHOLD,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Threshold %d for sensor type %d set to %d.\n",
p.threshold_id, p.sensor_type, p.value);
return 0;
}
int cmd_thermal_auto_fan_ctrl(int argc, char *argv[])
{
int rv;
rv = ec_command(EC_CMD_THERMAL_AUTO_FAN_CTRL,
NULL, 0, NULL, 0);
if (rv)
return rv;
printf("Automatic fan control is now on.\n");
return 0;
}
int cmd_pwm_get_fan_rpm(int argc, char *argv[])
{
int rv;
rv = read_mapped_mem16(EC_MEMMAP_FAN);
if (rv == 0xffff)
return -1;
if (rv == 0xfffe)
printf("Fan stalled!\n");
else
printf("Current fan RPM: %d\n", rv);
return 0;
}
int cmd_pwm_set_fan_rpm(int argc, char *argv[])
{
struct ec_params_pwm_set_fan_target_rpm p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr,
"Usage: %s <targetrpm>\n", argv[0]);
return -1;
}
p.rpm = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad RPM.\n");
return -1;
}
rv = ec_command(EC_CMD_PWM_SET_FAN_TARGET_RPM,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Fan target RPM set.\n");
return 0;
}
int cmd_pwm_get_keyboard_backlight(int argc, char *argv[])
{
struct ec_response_pwm_get_keyboard_backlight r;
int rv;
rv = ec_command(EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT,
NULL, 0, &r, sizeof(r));
if (rv)
return rv;
if (r.enabled == 1)
printf("Current keyboard backlight percent: %d\n", r.percent);
else
printf("Keyboard backlight disabled.\n");
return 0;
}
int cmd_pwm_set_keyboard_backlight(int argc, char *argv[])
{
struct ec_params_pwm_set_keyboard_backlight p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <percent>\n", argv[0]);
return -1;
}
p.percent = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad percent.\n");
return -1;
}
rv = ec_command(EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Keyboard backlight set.\n");
return 0;
}
int cmd_fanduty(int argc, char *argv[])
{
struct ec_params_pwm_set_fan_duty p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr,
"Usage: %s <targetrpm>\n", argv[0]);
return -1;
}
p.percent = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad percent arg.\n");
return -1;
}
rv = ec_command(EC_CMD_PWM_SET_FAN_DUTY,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Fan duty cycle set.\n");
return 0;
}
#define LBMSG(state) #state
#include "lightbar_msg_list.h"
static const char const *lightbar_cmds[] = {
LIGHTBAR_MSG_LIST
};
#undef LBMSG
/* This needs to match the values defined in lightbar.h. I'd like to
* define this in one and only one place, but I can't think of a good way to do
* that without adding bunch of complexity. This will do for now.
*/
static const struct {
uint8_t insize;
uint8_t outsize;
} lb_command_paramcount[] = {
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.dump),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.dump) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.off),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.off) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.on),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.on) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.init),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.init) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.brightness),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.brightness) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.seq),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.seq) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.reg),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.reg) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.rgb),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.rgb) },
{ sizeof(((struct ec_params_lightbar_cmd *)0)->in.get_seq),
sizeof(((struct ec_params_lightbar_cmd *)0)->out.get_seq) },
};
static int lb_help(const char *cmd)
{
printf("Usage:\n");
printf(" %s - dump all regs\n", cmd);
printf(" %s off - enter standby\n", cmd);
printf(" %s on - leave standby\n", cmd);
printf(" %s init - load default vals\n", cmd);
printf(" %s brightness NUM - set intensity (0-ff)\n", cmd);
printf(" %s seq [NUM|SEQUENCE] - run given pattern"
" (no arg for list)\n", cmd);
printf(" %s CTRL REG VAL - set LED controller regs\n", cmd);
printf(" %s LED RED GREEN BLUE - set color manually"
" (LED=4 for all)\n", cmd);
return 0;
}
static uint8_t lb_find_msg_by_name(const char *str)
{
uint8_t i;
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
if (!strcasecmp(str, lightbar_cmds[i]))
return i;
return LIGHTBAR_NUM_SEQUENCES;
}
static int lb_do_cmd(enum lightbar_command cmd,
struct ec_params_lightbar_cmd *ptr)
{
int r;
ptr->in.cmd = cmd;
r = ec_command(EC_CMD_LIGHTBAR_CMD,
ptr, lb_command_paramcount[cmd].insize,
ptr, lb_command_paramcount[cmd].outsize);
return r;
}
static void lb_show_msg_names(void)
{
int i, current_state;
struct ec_params_lightbar_cmd param;
(void)lb_do_cmd(LIGHTBAR_CMD_GET_SEQ, &param);
current_state = param.out.get_seq.num;
printf("sequence names:");
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
printf(" %s", lightbar_cmds[i]);
printf("\nCurrent = 0x%x %s\n", current_state,
lightbar_cmds[current_state]);
}
static int cmd_lightbar(int argc, char **argv)
{
int i, r;
struct ec_params_lightbar_cmd param;
if (1 == argc) { /* no args = dump 'em all */
r = lb_do_cmd(LIGHTBAR_CMD_DUMP, &param);
if (r)
return r;
for (i = 0; i < ARRAY_SIZE(param.out.dump.vals); i++) {
printf(" %02x %02x %02x\n",
param.out.dump.vals[i].reg,
param.out.dump.vals[i].ic0,
param.out.dump.vals[i].ic1);
}
return 0;
}
if (argc == 2 && !strcasecmp(argv[1], "init"))
return lb_do_cmd(LIGHTBAR_CMD_INIT, &param);
if (argc == 2 && !strcasecmp(argv[1], "off"))
return lb_do_cmd(LIGHTBAR_CMD_OFF, &param);
if (argc == 2 && !strcasecmp(argv[1], "on"))
return lb_do_cmd(LIGHTBAR_CMD_ON, &param);
if (argc == 3 && !strcasecmp(argv[1], "brightness")) {
char *e;
param.in.brightness.num = 0xff & strtoul(argv[2], &e, 16);
return lb_do_cmd(LIGHTBAR_CMD_BRIGHTNESS, &param);
}
if (argc >= 2 && !strcasecmp(argv[1], "seq")) {
char *e;
uint8_t num;
if (argc == 2) {
lb_show_msg_names();
return 0;
}
num = 0xff & strtoul(argv[2], &e, 16);
if (e && *e)
num = lb_find_msg_by_name(argv[2]);
if (num >= LIGHTBAR_NUM_SEQUENCES) {
fprintf(stderr, "Invalid arg\n");
return -1;
}
param.in.seq.num = num;
return lb_do_cmd(LIGHTBAR_CMD_SEQ, &param);
}
if (argc == 4) {
char *e;
param.in.reg.ctrl = 0xff & strtoul(argv[1], &e, 16);
param.in.reg.reg = 0xff & strtoul(argv[2], &e, 16);
param.in.reg.value = 0xff & strtoul(argv[3], &e, 16);
return lb_do_cmd(LIGHTBAR_CMD_REG, &param);
}
if (argc == 5) {
char *e;
param.in.rgb.led = strtoul(argv[1], &e, 16);
param.in.rgb.red = strtoul(argv[2], &e, 16);
param.in.rgb.green = strtoul(argv[3], &e, 16);
param.in.rgb.blue = strtoul(argv[4], &e, 16);
return lb_do_cmd(LIGHTBAR_CMD_RGB, &param);
}
return lb_help(argv[0]);
}
/* This needs to match the values defined in vboot.h. I'd like to
* define this in one and only one place, but I can't think of a good way to do
* that without adding bunch of complexity. This will do for now.
*/
static const struct {
uint8_t insize;
uint8_t outsize;
} vb_command_paramcount[] = {
{ sizeof(((struct ec_params_vboot_cmd *)0)->in.get_flags),
sizeof(((struct ec_params_vboot_cmd *)0)->out.get_flags) },
{ sizeof(((struct ec_params_vboot_cmd *)0)->in.set_flags),
sizeof(((struct ec_params_vboot_cmd *)0)->out.set_flags) },
};
/* Note: depends on enum system_image_copy_t */
static const char * const image_names[] = {"unknown", "RO", "A", "B"};
static int cmd_vboot(int argc, char **argv)
{
int r;
uint8_t v;
char *e;
struct ec_params_vboot_cmd param;
if (argc == 1) { /* no args = get */
param.in.cmd = VBOOT_CMD_GET_FLAGS;
r = ec_command(EC_CMD_VBOOT_CMD,
&param,
vb_command_paramcount[param.in.cmd].insize,
&param,
vb_command_paramcount[param.in.cmd].outsize);
if (r)
return r;
v = param.out.get_flags.val;
printf("0x%02x image=%s fake_dev=%d\n", v,
image_names[VBOOT_FLAGS_IMAGE_MASK & v],
VBOOT_FLAGS_FAKE_DEVMODE & v ? 1 : 0);
return 0;
}
/* else args => set values */
v = strtoul(argv[1], &e, 16) & 0xff;
if (e && *e) {
fprintf(stderr, "Bad value\n");
return -1;
}
param.in.cmd = VBOOT_CMD_SET_FLAGS;
param.in.set_flags.val = v;
r = ec_command(EC_CMD_VBOOT_CMD,
&param,
vb_command_paramcount[param.in.cmd].insize,
&param,
vb_command_paramcount[param.in.cmd].outsize);
return r;
}
int cmd_usb_charge_set_mode(int argc, char *argv[])
{
struct ec_params_usb_charge_set_mode p;
char *e;
int rv;
if (argc != 3) {
fprintf(stderr,
"Usage: %s <port_id> <mode_id>\n", argv[0]);
return -1;
}
p.usb_port_id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad port ID.\n");
return -1;
}
p.mode = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mode ID.\n");
return -1;
}
printf("Setting port %d to mode %d...\n", p.usb_port_id, p.mode);
rv = ec_command(EC_CMD_USB_CHARGE_SET_MODE,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("USB charging mode set.\n");
return 0;
}
int cmd_kbpress(int argc, char *argv[])
{
struct ec_params_mkbp_simulate_key p;
char *e;
int rv;
if (argc != 4) {
fprintf(stderr,
"Usage: %s <row> <col> <0|1>\n", argv[0]);
return -1;
}
p.row = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad row.\n");
return -1;
}
p.col = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad column.\n");
return -1;
}
p.pressed = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad pressed flag.\n");
return -1;
}
printf("%s row %d col %d.\n", p.pressed ? "Pressing" : "Releasing",
p.row,
p.col);
rv = ec_command(EC_CMD_MKBP_SIMULATE_KEY,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Done.\n");
return 0;
}
int cmd_pstore_info(int argc, char *argv[])
{
struct ec_response_pstore_info r;
int rv;
rv = ec_command(EC_CMD_PSTORE_INFO, NULL, 0, &r, sizeof(r));
if (rv)
return rv;
printf("PstoreSize %d\nAccessSize %d\n", r.pstore_size, r.access_size);
return 0;
}
int cmd_pstore_read(int argc, char *argv[])
{
struct ec_params_pstore_read p;
struct ec_response_pstore_read r;
int offset, size;
int rv;
int i;
char *e;
char *buf;
if (argc < 4) {
fprintf(stderr,
"Usage: %s <offset> <size> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x10000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
size = strtol(argv[2], &e, 0);
if ((e && *e) || size <= 0 || size > 0x10000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Reading %d bytes at offset %d...\n", size, offset);
buf = (char *)malloc(size);
if (!buf) {
fprintf(stderr, "Unable to allocate buffer.\n");
return -1;
}
/* Read data in chunks */
for (i = 0; i < size; i += EC_PSTORE_SIZE_MAX) {
p.offset = offset + i;
p.size = MIN(size - i, EC_PSTORE_SIZE_MAX);
rv = ec_command(EC_CMD_PSTORE_READ,
&p, sizeof(p), &r, sizeof(r));
if (rv) {
fprintf(stderr, "Read error at offset %d\n", i);
free(buf);
return -1;
}
memcpy(buf + i, r.data, p.size);
}
rv = write_file(argv[3], buf, size);
free(buf);
if (rv)
return -1;
printf("done.\n");
return 0;
}
int cmd_pstore_write(int argc, char *argv[])
{
struct ec_params_pstore_write p;
int offset, size;
int rv;
int i;
char *e;
char *buf;
if (argc < 3) {
fprintf(stderr, "Usage: %s <offset> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x10000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
/* Read the input file */
buf = read_file(argv[2], &size);
if (!buf)
return -1;
printf("Writing to offset %d...\n", offset);
/* Write data in chunks */
for (i = 0; i < size; i += EC_PSTORE_SIZE_MAX) {
p.offset = offset + i;
p.size = MIN(size - i, EC_PSTORE_SIZE_MAX);
memcpy(p.data, buf + i, p.size);
rv = ec_command(EC_CMD_PSTORE_WRITE,
&p, sizeof(p), NULL, 0);
if (rv) {
fprintf(stderr, "Write error at offset %d\n", i);
free(buf);
return -1;
}
}
free(buf);
printf("done.\n");
return 0;
}
int cmd_acpi_query_ec(int argc, char *argv[])
{
int rv;
rv = ec_command(EC_CMD_ACPI_QUERY_EVENT, NULL, 0, NULL, 0);
if (rv)
printf("Got host event %d (mask 0x%08x)\n", rv, 1 << (rv - 1));
else
printf("No host event pending.\n");
return 0;
}
int cmd_host_event_get_raw(int argc, char *argv[])
{
printf("Current host events: 0x%08x\n",
read_mapped_mem32(EC_MEMMAP_HOST_EVENTS));
return 0;
}
int cmd_host_event_get_smi_mask(int argc, char *argv[])
{
struct ec_response_host_event_mask r;
int rv;
rv = ec_command(EC_CMD_HOST_EVENT_GET_SMI_MASK,
NULL, 0, &r, sizeof(r));
if (rv)
return rv;
printf("Current host event SMI mask: 0x%08x\n", r.mask);
return 0;
}
int cmd_host_event_get_sci_mask(int argc, char *argv[])
{
struct ec_response_host_event_mask r;
int rv;
rv = ec_command(EC_CMD_HOST_EVENT_GET_SCI_MASK,
NULL, 0, &r, sizeof(r));
if (rv)
return rv;
printf("Current host event SCI mask: 0x%08x\n", r.mask);
return 0;
}
int cmd_host_event_get_wake_mask(int argc, char *argv[])
{
struct ec_response_host_event_mask r;
int rv;
rv = ec_command(EC_CMD_HOST_EVENT_GET_WAKE_MASK,
NULL, 0, &r, sizeof(r));
if (rv)
return rv;
printf("Current host event wake mask: 0x%08x\n", r.mask);
return 0;
}
int cmd_host_event_set_smi_mask(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_SET_SMI_MASK,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Mask set.\n");
return 0;
}
int cmd_host_event_set_sci_mask(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_SET_SCI_MASK,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Mask set.\n");
return 0;
}
int cmd_host_event_set_wake_mask(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_SET_WAKE_MASK,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Mask set.\n");
return 0;
}
int cmd_host_event_clear(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_CLEAR,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Host events cleared.\n");
return 0;
}
int cmd_switches(int argc, char *argv[])
{
uint8_t s = read_mapped_mem8(EC_MEMMAP_SWITCHES);
printf("Current switches: 0x%02x\n", s);
printf("Lid switch: %s\n",
(s & EC_SWITCH_LID_OPEN ? "OPEN" : "CLOSED"));
printf("Power button: %s\n",
(s & EC_SWITCH_POWER_BUTTON_PRESSED ? "DOWN" : "UP"));
printf("Write protect: %sABLED\n",
(s & EC_SWITCH_WRITE_PROTECT_DISABLED ? "DIS" : "EN"));
printf("Keyboard recovery: %sABLED\n",
(s & EC_SWITCH_KEYBOARD_RECOVERY ? "EN" : "DIS"));
printf("Dedicated recovery: %sABLED\n",
(s & EC_SWITCH_DEDICATED_RECOVERY ? "EN" : "DIS"));
return 0;
}
int cmd_wireless(int argc, char *argv[])
{
struct ec_params_switch_enable_wireless p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
fprintf(stderr, " 0x1 = WLAN\n"
" 0x2 = Bluetooth\n");
return -1;
}
p.enabled = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad value.\n");
return -1;
}
rv = ec_command(EC_CMD_SWITCH_ENABLE_WIRELESS,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Success.\n");
return 0;
}
int cmd_lcd_backlight(int argc, char *argv[])
{
struct ec_params_switch_enable_backlight p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <0|1>\n", argv[0]);
return -1;
}
p.enabled = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad value.\n");
return -1;
}
rv = ec_command(EC_CMD_SWITCH_ENABLE_BKLIGHT,
&p, sizeof(p), NULL, 0);
if (rv)
return rv;
printf("Success.\n");
return 0;
}
int cmd_battery(int argc, char *argv[])
{
char batt_text[EC_MEMMAP_TEXT_MAX];
int rv, val;
printf("Battery info:\n");
rv = read_mapped_string(EC_MEMMAP_BATT_MFGR, batt_text);
if (rv) {
if (!is_string_printable(batt_text))
goto cmd_error;
printf(" OEM name: %s\n", batt_text);
}
rv = read_mapped_string(EC_MEMMAP_BATT_MODEL, batt_text);
if (rv) {
if (!is_string_printable(batt_text))
goto cmd_error;
printf(" Model number: %s\n", batt_text);
}
rv = read_mapped_string(EC_MEMMAP_BATT_TYPE, batt_text);
if (rv) {
if (!is_string_printable(batt_text))
goto cmd_error;
printf(" Chemistry : %s\n", batt_text);
}
rv = read_mapped_string(EC_MEMMAP_BATT_SERIAL, batt_text);
if (rv) {
if (!is_string_printable(batt_text))
goto cmd_error;
printf(" Serial number: %s\n", batt_text);
}
val = read_mapped_mem32(EC_MEMMAP_BATT_DCAP);
if (!is_battery_range(val))
goto cmd_error;
printf(" Design capacity: %u mAh\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_LFCC);
if (!is_battery_range(val))
goto cmd_error;
printf(" Last full charge: %u mAh\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_DVLT);
if (!is_battery_range(val))
goto cmd_error;
printf(" Design output voltage %u mV\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_DCAP);
if (!is_battery_range(val))
goto cmd_error;
printf(" Design capacity warning %u mAh\n",
val * BATTERY_LEVEL_WARNING / 100);
printf(" Design capacity low %u mAh\n",
val * BATTERY_LEVEL_LOW / 100);
val = read_mapped_mem32(EC_MEMMAP_BATT_CCNT);
if (!is_battery_range(val))
goto cmd_error;
printf(" Cycle count %u\n", val);
return 0;
cmd_error:
fprintf(stderr, "Bad battery info value. Check protocol version.");
return -1;
}
int cmd_chipinfo(int argc, char *argv[])
{
struct ec_response_get_chip_info info;
int rv;
printf("Chip info:\n");
rv = ec_command(EC_CMD_GET_CHIP_INFO,
NULL, 0, &info, sizeof(info));
if (rv)
return rv;
printf(" vendor: %s\n", info.vendor);
printf(" name: %s\n", info.name);
printf(" revision: %s\n", info.revision);
return 0;
}
static int ec_hash_help(const char *cmd)
{
printf("Usage:\n");
printf(" %s - get last hash\n", cmd);
printf(" %s abort - abort hashing\n", cmd);
printf(" %s start [<offset> <size> [<nonce>]] - start hashing\n", cmd);
printf(" %s recalc [<offset> <size> [<nonce>]] - sync rehash\n", cmd);
return 0;
}
static int ec_hash_print(const struct ec_response_vboot_hash *r)
{
int i;
if (r->status == EC_VBOOT_HASH_STATUS_BUSY) {
printf("status: busy\n");
return 0;
} else if (r->status == EC_VBOOT_HASH_STATUS_NONE) {
printf("status: unavailable\n");
return 0;
} else if (r->status != EC_VBOOT_HASH_STATUS_DONE) {
printf("status: %d\n", r->status);
return 0;
}
printf("status: done\n");
if (r->hash_type == EC_VBOOT_HASH_TYPE_SHA256)
printf("type: SHA-256\n");
else
printf("type: %d\n", r->hash_type);
printf("offset: 0x%08x\n", r->offset);
printf("size: 0x%08x\n", r->size);
printf("hash: ");
for (i = 0; i < r->digest_size; i++)
printf("%02x", r->hash_digest[i]);
printf("\n");
return 0;
}
int cmd_ec_hash(int argc, char *argv[])
{
struct ec_params_vboot_hash p;
struct ec_response_vboot_hash r;
char *e;
if (argc < 2) {
/* Get hash status */
p.cmd = EC_VBOOT_HASH_GET;
if (ec_command(EC_CMD_VBOOT_HASH, &p, sizeof(p), &r, sizeof(r)))
return -1;
return ec_hash_print(&r);
}
if (argc == 2 && !strcasecmp(argv[1], "abort")) {
/* Abort hash calculation */
p.cmd = EC_VBOOT_HASH_ABORT;
if (ec_command(EC_CMD_VBOOT_HASH, &p, sizeof(p), &r, sizeof(r)))
return -1;
return 0;
}
/* The only other commands are start and recalc */
if (!strcasecmp(argv[1], "start"))
p.cmd = EC_VBOOT_HASH_START;
else if (!strcasecmp(argv[1], "recalc"))
p.cmd = EC_VBOOT_HASH_RECALC;
else
return ec_hash_help(argv[0]);
if (argc < 4) {
fprintf(stderr, "Must specify offset and size\n");
return -1;
}
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
p.offset = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
p.size = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad size.\n");
return -1;
}
if (argc == 5) {
/*
* Technically nonce can be any binary data up to 64 bytes,
* but this command only supports a 32-bit value.
*/
uint32_t nonce = strtol(argv[4], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad nonce integer.\n");
return -1;
}
memcpy(p.nonce_data, &nonce, sizeof(nonce));
p.nonce_size = sizeof(nonce);
} else
p.nonce_size = 0;
printf("Hashing %d bytes at offset %d...\n", p.size, p.offset);
if (ec_command(EC_CMD_VBOOT_HASH, &p, sizeof(p), &r, sizeof(r)))
return -1;
/* Start command doesn't wait for hashing to finish */
if (p.cmd == EC_VBOOT_HASH_START)
return 0;
/* Recalc command does wait around, so a result is ready now */
return ec_hash_print(&r);
}
struct command {
const char *name;
int (*handler)(int argc, char *argv[]);
};
/* NULL-terminated list of commands */
const struct command commands[] = {
{"autofanctrl", cmd_thermal_auto_fan_ctrl},
{"backlight", cmd_lcd_backlight},
{"battery", cmd_battery},
{"chipinfo", cmd_chipinfo},
{"echash", cmd_ec_hash},
{"eventclear", cmd_host_event_clear},
{"eventget", cmd_host_event_get_raw},
{"eventgetscimask", cmd_host_event_get_sci_mask},
{"eventgetsmimask", cmd_host_event_get_smi_mask},
{"eventgetwakemask", cmd_host_event_get_wake_mask},
{"eventsetscimask", cmd_host_event_set_sci_mask},
{"eventsetsmimask", cmd_host_event_set_smi_mask},
{"eventsetwakemask", cmd_host_event_set_wake_mask},
{"fanduty", cmd_fanduty},
{"flasherase", cmd_flash_erase},
{"flashread", cmd_flash_read},
{"flashwrite", cmd_flash_write},
{"flashinfo", cmd_flash_info},
{"hello", cmd_hello},
{"kbpress", cmd_kbpress},
{"lightbar", cmd_lightbar},
{"vboot", cmd_vboot},
{"pstoreinfo", cmd_pstore_info},
{"pstoreread", cmd_pstore_read},
{"pstorewrite", cmd_pstore_write},
{"pwmgetfanrpm", cmd_pwm_get_fan_rpm},
{"pwmgetkblight", cmd_pwm_get_keyboard_backlight},
{"pwmsetfanrpm", cmd_pwm_set_fan_rpm},
{"pwmsetkblight", cmd_pwm_set_keyboard_backlight},
{"queryec", cmd_acpi_query_ec},
{"readtest", cmd_read_test},
{"reboot_ec", cmd_reboot_ec},
{"sertest", cmd_serial_test},
{"switches", cmd_switches},
{"temps", cmd_temperature},
{"tempsinfo", cmd_temp_sensor_info},
{"thermalget", cmd_thermal_get_threshold},
{"thermalset", cmd_thermal_set_threshold},
{"usbchargemode", cmd_usb_charge_set_mode},
{"version", cmd_version},
{"wireless", cmd_wireless},
{NULL, NULL}
};
int main(int argc, char *argv[])
{
const struct command *cmd;
BUILD_ASSERT(ARRAY_SIZE(lb_command_paramcount) == LIGHTBAR_NUM_CMDS);
BUILD_ASSERT(ARRAY_SIZE(vb_command_paramcount) == VBOOT_NUM_CMDS);
if (argc < 2 || !strcasecmp(argv[1], "-?") ||
!strcasecmp(argv[1], "help")) {
print_help(argv[0]);
return -2;
}
if (comm_init() < 0)
return -3;
/* Handle commands */
for (cmd = commands; cmd->name; cmd++) {
if (!strcasecmp(argv[1], cmd->name))
return cmd->handler(argc - 1, argv + 1);
}
/* If we're still here, command was unknown */
fprintf(stderr, "Unknown command '%s'\n\n", argv[1]);
print_help(argv[0]);
return -2;
}