Files
OpenCellular/util/ectool.c
Eric Caruso fb5ff7b1bb lightbar: add seq type PROGRAM for user-programmable sequences
This diff allows the user to send small programs to the EC and
gain control of the lightbar. Right now, this is only exposed
through ectool, and sysfs support will come later.

To send a program to the EC, use
$ ectool lightbar program /path/to/program.bin
and then start running the program with
$ ectool lightbar seq program

BUG=None
BRANCH=ToT
TEST=Using the above steps with hand-assembled programs.
  Checked that infinite bytecode loops do not hang the EC.
  Checked that bad opcodes exit with an error.
  Stress tested pushing programs and changing sequences.

Signed-off-by: Eric Caruso <ejcaruso@chromium.org>
Change-Id: I635fb041a5dc5c403f7c26fb9a41b5563be9b6b7
Reviewed-on: https://chromium-review.googlesource.com/219558
Reviewed-by: Bill Richardson <wfrichar@chromium.org>
Reviewed-by: Randall Spangler <rspangler@chromium.org>
2014-09-25 07:59:16 +00:00

4977 lines
114 KiB
C

/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/io.h>
#include <unistd.h>
#include "battery.h"
#include "comm-host.h"
#include "compile_time_macros.h"
#include "ec_flash.h"
#include "ectool.h"
#include "lightbar.h"
#include "lock/gec_lock.h"
#include "misc_util.h"
#include "panic.h"
#include "sha1.h"
#include "usb_pd.h"
/* Command line options */
enum {
OPT_DEV = 1000,
OPT_INTERFACE,
OPT_NAME,
};
static struct option long_opts[] = {
{"dev", 1, 0, OPT_DEV},
{"interface", 1, 0, OPT_INTERFACE},
{"name", 1, 0, OPT_NAME},
{NULL, 0, 0, 0}
};
#define GEC_LOCK_TIMEOUT_SECS 30 /* 30 secs */
const char help_str[] =
"Commands:\n"
" extpwrcurrentlimit\n"
" Set the maximum external power current\n"
" autofanctrl <on>\n"
" Turn on automatic fan speed control.\n"
" backlight <enabled>\n"
" Enable/disable LCD backlight\n"
" battery\n"
" Prints battery info\n"
" batterycutoff [at-shutdown]\n"
" Cut off battery output power\n"
" batteryparam\n"
" Read or write board-specific battery parameter\n"
" boardversion\n"
" Prints the board version\n"
" chargecurrentlimit\n"
" Set the maximum battery charging current\n"
" chargecontrol\n"
" Force the battery to stop charging or discharge\n"
" chargestate\n"
" Handle commands related to charge state v2 (and later)\n"
" chipinfo\n"
" Prints chip info\n"
" cmdversions <cmd>\n"
" Prints supported version mask for a command number\n"
" console\n"
" Prints the last output to the EC debug console\n"
" echash [CMDS]\n"
" Various EC hash commands\n"
" eventclear <mask>\n"
" Clears EC host events flags where mask has bits set\n"
" eventclearb <mask>\n"
" Clears EC host events flags copy B where mask has bits set\n"
" eventget\n"
" Prints raw EC host event flags\n"
" eventgetb\n"
" Prints raw EC host event flags copy B\n"
" eventgetscimask\n"
" Prints SCI mask for EC host events\n"
" eventgetsmimask\n"
" Prints SMI mask for EC host events\n"
" eventgetwakemask\n"
" Prints wake mask for EC host events\n"
" eventsetscimask <mask>\n"
" Sets the SCI mask for EC host events\n"
" eventsetsmimask <mask>\n"
" Sets the SMI mask for EC host events\n"
" eventsetwakemask <mask>\n"
" Sets the wake mask for EC host events\n"
" fanduty <percent>\n"
" Forces the fan PWM to a constant duty cycle\n"
" flasherase <offset> <size>\n"
" Erases EC flash\n"
" flashinfo\n"
" Prints information on the EC flash\n"
" flashpd\n"
" Flash commands over PD\n"
" flashprotect [now] [enable | disable]\n"
" Prints or sets EC flash protection state\n"
" flashread <offset> <size> <outfile>\n"
" Reads from EC flash to a file\n"
" flashwrite <offset> <infile>\n"
" Writes to EC flash from a file\n"
" gpioget <GPIO name>\n"
" Get the value of GPIO signal\n"
" gpioset <GPIO name>\n"
" Set the value of GPIO signal\n"
" hangdetect <flags> <event_msec> <reboot_msec> | stop | start\n"
" Configure or start/stop the hang detect timer\n"
" hello\n"
" Checks for basic communication with EC\n"
" kbpress\n"
" Simulate key press\n"
" i2cread\n"
" Read I2C bus\n"
" i2cwrite\n"
" Write I2C bus\n"
" i2cxfer <port> <slave_addr> <read_count> [write bytes...]\n"
" Perform I2C transfer on EC's I2C bus\n"
" infopddev <port>\n"
" Get info about USB type-C accessory attached to port\n"
" keyscan <beat_us> <filename>\n"
" Test low-level key scanning\n"
" led <name> <query | auto | off | <color> | <color>=<value>...>\n"
" Set the color of an LED or query brightness range\n"
" lightbar [CMDS]\n"
" Various lightbar control commands\n"
" motionsense [CMDS]\n"
" Various motion sense control commands\n"
" panicinfo\n"
" Prints saved panic info\n"
" pause_in_s5 [on|off]\n"
" Whether or not the AP should pause in S5 on shutdown\n"
" port80flood\n"
" Rapidly write bytes to port 80\n"
" port80read\n"
" Print history of port 80 write\n"
" powerinfo\n"
" Prints power-related information\n"
" protoinfo\n"
" Prints EC host protocol information\n"
" pstoreinfo\n"
" Prints information on the EC host persistent storage\n"
" pstoreread <offset> <size> <outfile>\n"
" Reads from EC host persistent storage to a file\n"
" pstorewrite <offset> <infile>\n"
" Writes to EC host persistent storage from a file\n"
" pwmgetfanrpm [<index> | all]\n"
" Prints current fan RPM\n"
" pwmgetkblight\n"
" Prints current keyboard backlight percent\n"
" pwmsetfanrpm <targetrpm>\n"
" Set target fan RPM\n"
" pwmsetkblight <percent>\n"
" Set keyboard backlight in percent\n"
" readtest <patternoffset> <size>\n"
" Reads a pattern from the EC via LPC\n"
" reboot_ec <RO|RW|cold|hibernate|disable-jump> [at-shutdown]\n"
" Reboot EC to RO or RW\n"
" rtcget\n"
" Print real-time clock\n"
" rtcset <time>\n"
" Set real-time clock\n"
" rwhashpd <dev_id> <SHA1[0] ... <SHA1[4]>\n"
" Set entry in PD MCU's device rw_hash table.\n"
" sertest\n"
" Serial output test for COM2\n"
" switches\n"
" Prints current EC switch positions\n"
" temps <sensorid>\n"
" Print temperature.\n"
" tempsinfo <sensorid>\n"
" Print temperature sensor info.\n"
" thermalget <platform-specific args>\n"
" Get the threshold temperature values from the thermal engine.\n"
" thermalset <platform-specific args>\n"
" Set the threshold temperature values for the thermal engine.\n"
" tmp006cal <tmp006_index> [<S0> <b0> <b1> <b2>]\n"
" Get/set TMP006 calibration\n"
" tmp006raw <tmp006_index>\n"
" Get raw TMP006 data\n"
" usbchargemode <port> <mode>\n"
" Set USB charging mode\n"
" usbmux <mux>\n"
" Set USB mux switch state\n"
" usbpd <port> <auto | "
"[toggle|toggle-off|sink|source] [none|usb|dp|dock]>\n"
" Control USB PD/type-C\n"
" version\n"
" Prints EC version\n"
" wireless <flags> [<mask> [<suspend_flags> <suspend_mask>]]\n"
" Enable/disable WLAN/Bluetooth radio\n"
"";
/* Note: depends on enum system_image_copy_t */
static const char * const image_names[] = {"unknown", "RO", "RW"};
/* Note: depends on enum ec_led_colors */
static const char * const led_color_names[EC_LED_COLOR_COUNT] = {
"red", "green", "blue", "yellow", "white"};
/* Note: depends on enum ec_led_id */
static const char * const led_names[EC_LED_ID_COUNT] = {
"battery", "power", "adapter"};
/* Check SBS numerical value range */
int is_battery_range(int val)
{
return (val >= 0 && val <= 65535) ? 1 : 0;
}
int parse_bool(const char *s, int *dest)
{
if (!strcasecmp(s, "off") || !strncasecmp(s, "dis", 3) ||
tolower(*s) == 'f' || tolower(*s) == 'n') {
*dest = 0;
return 1;
} else if (!strcasecmp(s, "on") || !strncasecmp(s, "ena", 3) ||
tolower(*s) == 't' || tolower(*s) == 'y') {
*dest = 1;
return 1;
} else {
return 0;
}
}
void print_help(const char *prog, int print_cmds)
{
printf("Usage: %s [--dev=n] [--interface=dev|lpc|i2c] ", prog);
printf("[--name=cros_ec|cros_sh|cros_pd] <command> [params]\n\n");
if (print_cmds)
puts(help_str);
else
printf("Use '%s help' to print a list of commands.\n", prog);
}
static uint8_t read_mapped_mem8(uint8_t offset)
{
int ret;
uint8_t val;
ret = ec_readmem(offset, sizeof(val), &val);
if (ret <= 0) {
fprintf(stderr, "failure in %s(): %d\n", __func__, ret);
exit(1);
}
return val;
}
static uint16_t read_mapped_mem16(uint8_t offset)
{
int ret;
uint16_t val;
ret = ec_readmem(offset, sizeof(val), &val);
if (ret <= 0) {
fprintf(stderr, "failure in %s(): %d\n", __func__, ret);
exit(1);
}
return val;
}
static uint32_t read_mapped_mem32(uint8_t offset)
{
int ret;
uint32_t val;
ret = ec_readmem(offset, sizeof(val), &val);
if (ret <= 0) {
fprintf(stderr, "failure in %s(): %d\n", __func__, ret);
exit(1);
}
return val;
}
static int read_mapped_string(uint8_t offset, char *buffer, int max_size)
{
int ret;
ret = ec_readmem(offset, max_size, buffer);
if (ret <= 0) {
fprintf(stderr, "failure in %s(): %d\n", __func__, ret);
exit(1);
}
return ret;
}
int cmd_hello(int argc, char *argv[])
{
struct ec_params_hello p;
struct ec_response_hello r;
int rv;
p.in_data = 0xa0b0c0d0;
rv = ec_command(EC_CMD_HELLO, 0, &p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
if (r.out_data != 0xa1b2c3d4) {
fprintf(stderr, "Expected response 0x%08x, got 0x%08x\n",
0xa1b2c3d4, r.out_data);
return -1;
}
printf("EC says hello!\n");
return 0;
}
int cmd_test(int argc, char *argv[])
{
struct ec_params_test_protocol p = {
.buf = "0123456789abcdef0123456789ABCDEF"
};
struct ec_response_test_protocol r;
int rv, version = 0;
char *e;
if (argc < 3) {
fprintf(stderr, "Usage: %s result length [version]\n",
argv[0]);
return -1;
}
p.ec_result = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "invalid param (result)\n");
return -1;
}
p.ret_len = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "invalid param (length)\n");
return -1;
}
if (argc > 3) {
version = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "invalid param (version)\n");
return -1;
}
}
rv = ec_command(EC_CMD_TEST_PROTOCOL, version,
&p, sizeof(p), &r, sizeof(r));
printf("rv = %d\n", rv);
return rv;
}
int cmd_s5(int argc, char *argv[])
{
struct ec_params_get_set_value p;
struct ec_params_get_set_value r;
int rv;
p.flags = 0;
if (argc > 1) {
p.flags |= EC_GSV_SET;
if (!parse_bool(argv[1], &p.value)) {
fprintf(stderr, "invalid arg \"%s\"\n", argv[1]);
return -1;
}
}
rv = ec_command(EC_CMD_GSV_PAUSE_IN_S5, 0,
&p, sizeof(p), &r, sizeof(r));
if (rv > 0)
printf("%s\n", r.value ? "on" : "off");
return rv < 0;
}
int cmd_cmdversions(int argc, char *argv[])
{
struct ec_params_get_cmd_versions p;
struct ec_response_get_cmd_versions r;
char *e;
int cmd;
int rv;
if (argc < 2) {
fprintf(stderr, "Usage: %s <cmd>\n", argv[0]);
return -1;
}
cmd = strtol(argv[1], &e, 0);
if ((e && *e) || cmd < 0 || cmd > 0xff) {
fprintf(stderr, "Bad command number.\n");
return -1;
}
p.cmd = cmd;
rv = ec_command(EC_CMD_GET_CMD_VERSIONS, 0, &p, sizeof(p),
&r, sizeof(r));
if (rv < 0) {
if (rv == -EC_RES_INVALID_PARAM)
printf("Command 0x%02x not supported by EC.\n", cmd);
return rv;
}
printf("Command 0x%02x supports version mask 0x%08x\n",
cmd, r.version_mask);
return 0;
}
int cmd_version(int argc, char *argv[])
{
struct ec_response_get_version r;
char *build_string = (char *)ec_inbuf;
int rv;
rv = ec_command(EC_CMD_GET_VERSION, 0, NULL, 0, &r, sizeof(r));
if (rv < 0) {
fprintf(stderr, "ERROR: EC_CMD_GET_VERSION failed: %d\n", rv);
return rv;
}
rv = ec_command(EC_CMD_GET_BUILD_INFO, 0,
NULL, 0, ec_inbuf, ec_max_insize);
if (rv < 0) {
fprintf(stderr, "ERROR: EC_CMD_GET_BUILD_INFO failed: %d\n",
rv);
return rv;
}
/* Ensure versions are null-terminated before we print them */
r.version_string_ro[sizeof(r.version_string_ro) - 1] = '\0';
r.version_string_rw[sizeof(r.version_string_rw) - 1] = '\0';
build_string[ec_max_insize - 1] = '\0';
/* Print versions */
printf("RO version: %s\n", r.version_string_ro);
printf("RW version: %s\n", r.version_string_rw);
printf("Firmware copy: %s\n",
(r.current_image < ARRAY_SIZE(image_names) ?
image_names[r.current_image] : "?"));
printf("Build info: %s\n", build_string);
return 0;
}
int cmd_read_test(int argc, char *argv[])
{
struct ec_params_read_test p;
struct ec_response_read_test r;
int offset, size;
int errors = 0;
int rv;
int i;
char *e;
char *buf;
uint32_t *b;
if (argc < 3) {
fprintf(stderr, "Usage: %s <pattern_offset> <size>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
size = strtol(argv[2], &e, 0);
if ((e && *e) || size <= 0 || size > 0x100000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Reading %d bytes with pattern offset 0x%x...\n", size, offset);
buf = (char *)malloc(size);
if (!buf) {
fprintf(stderr, "Unable to allocate buffer.\n");
return -1;
}
/* Read data in chunks */
for (i = 0; i < size; i += sizeof(r.data)) {
p.offset = offset + i / sizeof(uint32_t);
p.size = MIN(size - i, sizeof(r.data));
rv = ec_command(EC_CMD_READ_TEST, 0, &p, sizeof(p),
&r, sizeof(r));
if (rv < 0) {
fprintf(stderr, "Read error at offset %d\n", i);
free(buf);
return rv;
}
memcpy(buf + i, r.data, p.size);
}
/* Check data */
for (i = 0, b = (uint32_t *)buf; i < size / 4; i++, b++) {
if (*b != i + offset) {
printf("Mismatch at byte offset 0x%x: "
"expected 0x%08x, got 0x%08x\n",
(int)(i * sizeof(uint32_t)), i + offset, *b);
errors++;
}
}
free(buf);
if (errors) {
printf("Found %d errors\n", errors);
return -1;
}
printf("done.\n");
return 0;
}
int cmd_reboot_ec(int argc, char *argv[])
{
struct ec_params_reboot_ec p;
int rv, i;
if (argc < 2) {
/*
* No params specified so tell the EC to reboot immediately.
* That reboots the AP as well, so unlikely we'll be around
* to see a return code from this...
*/
rv = ec_command(EC_CMD_REBOOT, 0, NULL, 0, NULL, 0);
return (rv < 0 ? rv : 0);
}
/* Parse command */
if (!strcmp(argv[1], "cancel"))
p.cmd = EC_REBOOT_CANCEL;
else if (!strcmp(argv[1], "RO"))
p.cmd = EC_REBOOT_JUMP_RO;
else if (!strcmp(argv[1], "RW") || !strcmp(argv[1], "A")) {
/*
* TODO(crosbug.com/p/11149): remove "A" once all scripts are
* updated to use "RW".
*/
p.cmd = EC_REBOOT_JUMP_RW;
} else if (!strcmp(argv[1], "cold"))
p.cmd = EC_REBOOT_COLD;
else if (!strcmp(argv[1], "disable-jump"))
p.cmd = EC_REBOOT_DISABLE_JUMP;
else if (!strcmp(argv[1], "hibernate"))
p.cmd = EC_REBOOT_HIBERNATE;
else {
fprintf(stderr, "Unknown command: %s\n", argv[1]);
return -1;
}
/* Parse flags, if any */
p.flags = 0;
for (i = 2; i < argc; i++) {
if (!strcmp(argv[i], "at-shutdown"))
p.flags |= EC_REBOOT_FLAG_ON_AP_SHUTDOWN;
else {
fprintf(stderr, "Unknown flag: %s\n", argv[i]);
return -1;
}
}
rv = ec_command(EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0);
return (rv < 0 ? rv : 0);
}
int cmd_flash_info(int argc, char *argv[])
{
struct ec_response_flash_info_1 r;
int cmdver = 1;
int rsize = sizeof(r);
int rv;
memset(&r, 0, sizeof(r));
if (!ec_cmd_version_supported(EC_CMD_FLASH_INFO, cmdver)) {
/* Fall back to version 0 command */
cmdver = 0;
rsize = sizeof(struct ec_response_flash_info);
}
rv = ec_command(EC_CMD_FLASH_INFO, cmdver, NULL, 0, &r, rsize);
if (rv < 0)
return rv;
printf("FlashSize %d\nWriteSize %d\nEraseSize %d\nProtectSize %d\n",
r.flash_size, r.write_block_size, r.erase_block_size,
r.protect_block_size);
if (cmdver >= 1) {
/* Fields added in ver.1 available */
printf("WriteIdealSize %d\nFlags 0x%x\n",
r.write_ideal_size, r.flags);
}
return 0;
}
int cmd_flash_read(int argc, char *argv[])
{
int offset, size;
int rv;
char *e;
char *buf;
if (argc < 4) {
fprintf(stderr,
"Usage: %s <offset> <size> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x100000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
size = strtol(argv[2], &e, 0);
if ((e && *e) || size <= 0 || size > 0x100000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Reading %d bytes at offset %d...\n", size, offset);
buf = (char *)malloc(size);
if (!buf) {
fprintf(stderr, "Unable to allocate buffer.\n");
return -1;
}
/* Read data in chunks */
rv = ec_flash_read(buf, offset, size);
if (rv < 0) {
free(buf);
return rv;
}
rv = write_file(argv[3], buf, size);
free(buf);
if (rv)
return rv;
printf("done.\n");
return 0;
}
int cmd_flash_write(int argc, char *argv[])
{
int offset, size;
int rv;
char *e;
char *buf;
if (argc < 3) {
fprintf(stderr, "Usage: %s <offset> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x100000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
/* Read the input file */
buf = read_file(argv[2], &size);
if (!buf)
return -1;
printf("Writing to offset %d...\n", offset);
/* Write data in chunks */
rv = ec_flash_write(buf, offset, size);
free(buf);
if (rv < 0)
return rv;
printf("done.\n");
return 0;
}
int cmd_flash_erase(int argc, char *argv[])
{
int offset, size;
char *e;
int rv;
if (argc < 3) {
fprintf(stderr, "Usage: %s <offset> <size>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x100000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
size = strtol(argv[2], &e, 0);
if ((e && *e) || size <= 0 || size > 0x100000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Erasing %d bytes at offset %d...\n", size, offset);
rv = ec_flash_erase(offset, size);
if (rv < 0)
return rv;
printf("done.\n");
return 0;
}
static void print_flash_protect_flags(const char *desc, uint32_t flags)
{
printf("%s 0x%08x", desc, flags);
if (flags & EC_FLASH_PROTECT_GPIO_ASSERTED)
printf(" wp_gpio_asserted");
if (flags & EC_FLASH_PROTECT_RO_AT_BOOT)
printf(" ro_at_boot");
if (flags & EC_FLASH_PROTECT_ALL_AT_BOOT)
printf(" all_at_boot");
if (flags & EC_FLASH_PROTECT_RO_NOW)
printf(" ro_now");
if (flags & EC_FLASH_PROTECT_ALL_NOW)
printf(" all_now");
if (flags & EC_FLASH_PROTECT_ERROR_STUCK)
printf(" STUCK");
if (flags & EC_FLASH_PROTECT_ERROR_INCONSISTENT)
printf(" INCONSISTENT");
printf("\n");
}
int cmd_flash_protect(int argc, char *argv[])
{
struct ec_params_flash_protect p;
struct ec_response_flash_protect r;
int rv, i;
/*
* Set up requested flags. If no flags were specified, p.mask will
* be 0 and nothing will change.
*/
p.mask = p.flags = 0;
for (i = 1; i < argc; i++) {
if (!strcasecmp(argv[i], "now")) {
p.mask |= EC_FLASH_PROTECT_ALL_NOW;
p.flags |= EC_FLASH_PROTECT_ALL_NOW;
} else if (!strcasecmp(argv[i], "enable")) {
p.mask |= EC_FLASH_PROTECT_RO_AT_BOOT;
p.flags |= EC_FLASH_PROTECT_RO_AT_BOOT;
} else if (!strcasecmp(argv[i], "disable"))
p.mask |= EC_FLASH_PROTECT_RO_AT_BOOT;
}
rv = ec_command(EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
&p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
if (rv < sizeof(r)) {
fprintf(stderr, "Too little data returned.\n");
return -1;
}
/* Print returned flags */
print_flash_protect_flags("Flash protect flags:", r.flags);
print_flash_protect_flags("Valid flags: ", r.valid_flags);
print_flash_protect_flags("Writable flags: ", r.writable_flags);
/* Check if we got all the flags we asked for */
if ((r.flags & p.mask) != (p.flags & p.mask)) {
fprintf(stderr, "Unable to set requested flags "
"(wanted mask 0x%08x flags 0x%08x)\n",
p.mask, p.flags);
if (p.mask & ~r.writable_flags)
fprintf(stderr, "Which is expected, because writable "
"mask is 0x%08x.\n", r.writable_flags);
return -1;
}
return 0;
}
int cmd_rw_hash_pd(int argc, char *argv[])
{
struct ec_params_usb_pd_rw_hash_entry *p =
(struct ec_params_usb_pd_rw_hash_entry *)ec_outbuf;
int i, rv;
char *e;
if (argc < 7) {
fprintf(stderr, "Usage: %s <dev_id> <SHA1[0]> ... <SHA1[4]>\n",
argv[0]);
return -1;
}
p->dev_id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad device ID\n");
return -1;
}
for (i = 2; i < 7; i++) {
p->dev_rw_hash.w[i - 2] = strtol(argv[i], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad SHA1 digest\n");
return -1;
}
}
rv = ec_command(EC_CMD_USB_PD_RW_HASH_ENTRY, 0, p, sizeof(*p), NULL, 0);
return rv;
}
int cmd_pd_device_info(int argc, char *argv[])
{
int i, rv;
char *e;
struct ec_params_usb_pd_info_request *p =
(struct ec_params_usb_pd_info_request *)ec_outbuf;
struct ec_params_usb_pd_rw_hash_entry *r =
(struct ec_params_usb_pd_rw_hash_entry *)ec_inbuf;
if (argc < 2) {
fprintf(stderr, "Usage: %s <port>\n", argv[0]);
return -1;
}
p->port = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad port\n");
return -1;
}
rv = ec_command(EC_CMD_USB_PD_DEV_INFO, 0, p, sizeof(*p),
ec_inbuf, ec_max_insize);
if (rv < 0)
return rv;
if (!r->dev_id)
printf("Port:%d has no valid device\n", p->port);
else {
printf("Port:%d Device:%d Hash: ", p->port, r->dev_id);
for (i = 0; i < 5; i++)
printf(" 0x%08x", r->dev_rw_hash.w[i]);
printf("\n");
}
return rv;
}
/* PD image size is 16k minus 32 bits for the RW hash */
#define PD_RW_IMAGE_SIZE (16 * 1024 - 32)
static struct sha1_ctx ctx;
int cmd_flash_pd(int argc, char *argv[])
{
struct ec_params_usb_pd_fw_update *p =
(struct ec_params_usb_pd_fw_update *)ec_outbuf;
int i;
int rv, fsize, step = 96, padding_size;
char *e;
char *buf, *fw_padding;
uint32_t *data = &(p->size) + 1;
if (argc < 4) {
fprintf(stderr, "Usage: %s <dev_id> <port> <filename>\n",
argv[0]);
return -1;
}
p->dev_id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad device ID\n");
return -1;
}
p->port = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad port\n");
return -1;
}
/* Read the input file */
buf = read_file(argv[3], &fsize);
if (!buf)
return -1;
/* Verify size of file */
if (fsize > PD_RW_IMAGE_SIZE)
goto pd_flash_error;
/* Add padding to image */
padding_size = PD_RW_IMAGE_SIZE - fsize;
fw_padding = (char *)malloc(padding_size);
memset(fw_padding, 0xff, padding_size);
fprintf(stderr, "File size %d, Padding size %d\n", fsize, padding_size);
/* Write expected flash hash to all 0s */
fprintf(stderr, "Erasing expected RW hash\n");
p->cmd = USB_PD_FW_FLASH_HASH;
p->size = 20;
for (i = 0; i < 5; i++)
*(data + i) = 0;
rv = ec_command(EC_CMD_USB_PD_FW_UPDATE, 0,
p, p->size + sizeof(*p), NULL, 0);
if (rv < 0)
goto pd_flash_error;
/* Reboot */
fprintf(stderr, "Rebooting\n");
p->cmd = USB_PD_FW_REBOOT;
p->size = 0;
rv = ec_command(EC_CMD_USB_PD_FW_UPDATE, 0,
p, p->size + sizeof(*p), NULL, 0);
if (rv < 0)
goto pd_flash_error;
/* Erase RW flash */
fprintf(stderr, "Erasing RW flash\n");
p->cmd = USB_PD_FW_FLASH_ERASE;
p->size = 0;
rv = ec_command(EC_CMD_USB_PD_FW_UPDATE, 0,
p, p->size + sizeof(*p), NULL, 0);
if (rv < 0)
goto pd_flash_error;
/* Write RW flash */
fprintf(stderr, "Writing RW flash\n");
p->cmd = USB_PD_FW_FLASH_WRITE;
p->size = step;
for (i = 0; i < fsize; i += step) {
p->size = MIN(fsize - i, step);
memcpy(data, buf + i, p->size);
rv = ec_command(EC_CMD_USB_PD_FW_UPDATE, 0,
p, p->size + sizeof(*p), NULL, 0);
if (rv < 0)
goto pd_flash_error;
}
/*
* TODO(crosbug.com/p/31552): Would be better to have sha1 in the RW
* binary and we won't have to calculate it here and send it down.
*/
/* Calculate sha1 of new RW flash */
sha1_init(&ctx);
sha1_update(&ctx, buf, fsize);
sha1_update(&ctx, fw_padding, padding_size);
sha1_final(&ctx);
/* Write expected flash hash */
fprintf(stderr, "Setting expected RW hash\n");
p->cmd = USB_PD_FW_FLASH_HASH;
p->size = 20;
memcpy(data, ctx.buf.b, p->size);
for (i = 0; i < 5; i++)
fprintf(stderr, "%08x ", *(data + i));
fprintf(stderr, "\n");
rv = ec_command(EC_CMD_USB_PD_FW_UPDATE, 0,
p, p->size + sizeof(*p), NULL, 0);
if (rv < 0)
goto pd_flash_error;
free(buf);
fprintf(stderr, "Complete\n");
return 0;
pd_flash_error:
free(buf);
fprintf(stderr, "PD flash error\n");
return -1;
}
int cmd_serial_test(int argc, char *argv[])
{
const char *c = "COM2 sample serial output from host!\r\n";
printf("Writing sample serial output to COM2\n");
while (*c) {
/* Wait for space in transmit FIFO */
while (!(inb(0x2fd) & 0x20))
;
/* Put the next character */
outb(*c++, 0x2f8);
}
printf("done.\n");
return 0;
}
int read_mapped_temperature(int id)
{
int rv;
if (!read_mapped_mem8(EC_MEMMAP_THERMAL_VERSION)) {
/*
* The temp_sensor_init() is not called, which implies no
* temp sensor is defined.
*/
rv = EC_TEMP_SENSOR_NOT_PRESENT;
} else if (id < EC_TEMP_SENSOR_ENTRIES)
rv = read_mapped_mem8(EC_MEMMAP_TEMP_SENSOR + id);
else if (read_mapped_mem8(EC_MEMMAP_THERMAL_VERSION) >= 2)
rv = read_mapped_mem8(EC_MEMMAP_TEMP_SENSOR_B +
id - EC_TEMP_SENSOR_ENTRIES);
else {
/* Sensor in second bank, but second bank isn't supported */
rv = EC_TEMP_SENSOR_NOT_PRESENT;
}
return rv;
}
int cmd_temperature(int argc, char *argv[])
{
int rv;
int id;
char *e;
if (argc != 2) {
fprintf(stderr, "Usage: %s <sensorid> | all\n", argv[0]);
return -1;
}
if (strcmp(argv[1], "all") == 0) {
for (id = 0;
id < EC_TEMP_SENSOR_ENTRIES + EC_TEMP_SENSOR_B_ENTRIES;
id++) {
rv = read_mapped_temperature(id);
switch (rv) {
case EC_TEMP_SENSOR_NOT_PRESENT:
break;
case EC_TEMP_SENSOR_ERROR:
fprintf(stderr, "Sensor %d error\n", id);
break;
case EC_TEMP_SENSOR_NOT_POWERED:
fprintf(stderr, "Sensor %d disabled\n", id);
break;
case EC_TEMP_SENSOR_NOT_CALIBRATED:
fprintf(stderr, "Sensor %d not calibrated\n",
id);
break;
default:
printf("%d: %d\n", id,
rv + EC_TEMP_SENSOR_OFFSET);
}
}
return 0;
}
id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor ID.\n");
return -1;
}
if (id < 0 ||
id >= EC_TEMP_SENSOR_ENTRIES + EC_TEMP_SENSOR_B_ENTRIES) {
printf("Sensor ID invalid.\n");
return -1;
}
printf("Reading temperature...");
rv = read_mapped_temperature(id);
switch (rv) {
case EC_TEMP_SENSOR_NOT_PRESENT:
printf("Sensor not present\n");
return -1;
case EC_TEMP_SENSOR_ERROR:
printf("Error\n");
return -1;
case EC_TEMP_SENSOR_NOT_POWERED:
printf("Sensor disabled/unpowered\n");
return -1;
case EC_TEMP_SENSOR_NOT_CALIBRATED:
fprintf(stderr, "Sensor not calibrated\n");
return -1;
default:
printf("%d\n", rv + EC_TEMP_SENSOR_OFFSET);
return 0;
}
}
int cmd_temp_sensor_info(int argc, char *argv[])
{
struct ec_params_temp_sensor_get_info p;
struct ec_response_temp_sensor_get_info r;
int rv;
char *e;
if (argc != 2) {
fprintf(stderr, "Usage: %s <sensorid> | all\n", argv[0]);
return -1;
}
if (strcmp(argv[1], "all") == 0) {
for (p.id = 0;
p.id < EC_TEMP_SENSOR_ENTRIES + EC_TEMP_SENSOR_B_ENTRIES;
p.id++) {
rv = ec_command(EC_CMD_TEMP_SENSOR_GET_INFO, 0,
&p, sizeof(p), &r, sizeof(r));
if (rv < 0)
continue;
printf("%d: %d %s\n", p.id, r.sensor_type,
r.sensor_name);
}
return 0;
}
p.id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor ID.\n");
return -1;
}
rv = ec_command(EC_CMD_TEMP_SENSOR_GET_INFO, 0,
&p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
printf("Sensor name: %s\n", r.sensor_name);
printf("Sensor type: %d\n", r.sensor_type);
return 0;
}
int cmd_thermal_get_threshold_v0(int argc, char *argv[])
{
struct ec_params_thermal_get_threshold p;
struct ec_response_thermal_get_threshold r;
char *e;
int rv;
if (argc != 3) {
fprintf(stderr,
"Usage: %s <sensortypeid> <thresholdid>\n", argv[0]);
return -1;
}
p.sensor_type = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor type ID.\n");
return -1;
}
p.threshold_id = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad threshold ID.\n");
return -1;
}
rv = ec_command(EC_CMD_THERMAL_GET_THRESHOLD, 0,
&p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
if (r.value < 0)
return -1;
printf("Threshold %d for sensor type %d is %d K.\n",
p.threshold_id, p.sensor_type, r.value);
return 0;
}
int cmd_thermal_set_threshold_v0(int argc, char *argv[])
{
struct ec_params_thermal_set_threshold p;
char *e;
int rv;
if (argc != 4) {
fprintf(stderr,
"Usage: %s <sensortypeid> <thresholdid> <value>\n",
argv[0]);
return -1;
}
p.sensor_type = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad sensor type ID.\n");
return -1;
}
p.threshold_id = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad threshold ID.\n");
return -1;
}
p.value = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad threshold value.\n");
return -1;
}
rv = ec_command(EC_CMD_THERMAL_SET_THRESHOLD, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Threshold %d for sensor type %d set to %d.\n",
p.threshold_id, p.sensor_type, p.value);
return 0;
}
int cmd_thermal_get_threshold_v1(int argc, char *argv[])
{
struct ec_params_thermal_get_threshold_v1 p;
struct ec_thermal_config r;
struct ec_params_temp_sensor_get_info pi;
struct ec_response_temp_sensor_get_info ri;
int rv;
int i;
printf("sensor warn high halt fan_off fan_max name\n");
for (i = 0; i < 99; i++) { /* number of sensors is unknown */
/* ask for one */
p.sensor_num = i;
rv = ec_command(EC_CMD_THERMAL_GET_THRESHOLD, 1,
&p, sizeof(p), &r, sizeof(r));
if (rv <= 0) /* stop on first failure */
break;
/* ask for its name, too */
pi.id = i;
rv = ec_command(EC_CMD_TEMP_SENSOR_GET_INFO, 0,
&pi, sizeof(pi), &ri, sizeof(ri));
/* print what we know */
printf(" %2d %3d %3d %3d %3d %3d %s\n",
i,
r.temp_host[EC_TEMP_THRESH_WARN],
r.temp_host[EC_TEMP_THRESH_HIGH],
r.temp_host[EC_TEMP_THRESH_HALT],
r.temp_fan_off, r.temp_fan_max,
rv > 0 ? ri.sensor_name : "?");
}
if (i)
printf("(all temps in degrees Kelvin)\n");
return 0;
}
int cmd_thermal_set_threshold_v1(int argc, char *argv[])
{
struct ec_params_thermal_get_threshold_v1 p;
struct ec_thermal_config r;
struct ec_params_thermal_set_threshold_v1 s;
int i, n, val, rv;
char *e;
if (argc < 3 || argc > 7) {
printf("Usage: %s"
" sensor warn [high [shutdown [fan_off [fan_max]]]]\n",
argv[0]);
return 1;
}
n = strtod(argv[1], &e);
if (e && *e) {
printf("arg %d is invalid\n", 1);
return 1;
}
p.sensor_num = n;
rv = ec_command(EC_CMD_THERMAL_GET_THRESHOLD, 1,
&p, sizeof(p), &r, sizeof(r));
if (rv <= 0)
return rv;
s.sensor_num = n;
s.cfg = r;
for (i = 2; i < argc; i++) {
val = strtod(argv[i], &e);
if (e && *e) {
printf("arg %d is invalid\n", i);
return 1;
}
if (val < 0)
continue;
switch (i) {
case 2:
case 3:
case 4:
s.cfg.temp_host[i-2] = val;
break;
case 5:
s.cfg.temp_fan_off = val;
break;
case 6:
s.cfg.temp_fan_max = val;
break;
}
}
rv = ec_command(EC_CMD_THERMAL_SET_THRESHOLD, 1,
&s, sizeof(s), NULL, 0);
return rv;
}
/**
* Detect the version of EC_CMD_THERMAL_GET_THRESHOLD that the EC supports.
*
* @return The version, or -1 if error.
*/
static int thermal_threshold_version(void)
{
struct ec_params_thermal_get_threshold v0_p;
struct ec_response_thermal_get_threshold v0_r;
struct ec_params_thermal_get_threshold_v1 v1_p;
struct ec_thermal_config v1_r;
int rv;
v1_p.sensor_num = 0;
rv = ec_command(EC_CMD_THERMAL_GET_THRESHOLD, 1,
&v1_p, sizeof(v1_p), &v1_r, sizeof(v1_r));
/*
* TODO(crosbug.com/p/23828): Version 1 of the threshold command will
* only return EC_RES_SUCCESS or EC_RES_INVALID_PARAM?
*/
if (rv > 0)
return 1;
v0_p.sensor_type = 0;
v0_p.threshold_id = 0;
rv = ec_command(EC_CMD_THERMAL_GET_THRESHOLD, 0,
&v0_p, sizeof(v0_p), &v0_r, sizeof(v0_r));
/*
* TODO(crosbug.com/p/23828): Version 0 of the threshold command will
* only return EC_RES_SUCCESS or EC_RES_ERROR?
*/
if (rv > 0)
return 0;
/*
* Anything else is most likely EC_RES_INVALID_COMMAND, but we don't
* care because it's nothing we can use.
*/
return -1;
}
int cmd_thermal_get_threshold(int argc, char *argv[])
{
switch (thermal_threshold_version()) {
case 0:
return cmd_thermal_get_threshold_v0(argc, argv);
case 1:
return cmd_thermal_get_threshold_v1(argc, argv);
default:
printf("I got nuthin.\n");
return -1;
}
}
int cmd_thermal_set_threshold(int argc, char *argv[])
{
switch (thermal_threshold_version()) {
case 0:
return cmd_thermal_set_threshold_v0(argc, argv);
case 1:
return cmd_thermal_set_threshold_v1(argc, argv);
default:
printf("I got nuthin.\n");
return -1;
}
}
int cmd_thermal_auto_fan_ctrl(int argc, char *argv[])
{
int rv;
rv = ec_command(EC_CMD_THERMAL_AUTO_FAN_CTRL, 0, NULL, 0, NULL, 0);
if (rv < 0)
return rv;
printf("Automatic fan control is now on.\n");
return 0;
}
static int print_fan(int idx)
{
int rv = read_mapped_mem16(EC_MEMMAP_FAN + 2 * idx);
switch (rv) {
case EC_FAN_SPEED_NOT_PRESENT:
return -1;
case EC_FAN_SPEED_STALLED:
printf("Fan %d stalled!\n", idx);
break;
default:
printf("Fan %d RPM: %d\n", idx, rv);
break;
}
return 0;
}
int cmd_pwm_get_fan_rpm(int argc, char *argv[])
{
int i;
if (argc < 2 || !strcasecmp(argv[1], "all")) {
/* Print all the fan speeds */
for (i = 0; i < EC_FAN_SPEED_ENTRIES; i++) {
if (print_fan(i))
break; /* Stop at first not-present fan */
}
} else {
char *e;
int idx;
idx = strtol(argv[1], &e, 0);
if ((e && *e) || idx < 0 || idx >= EC_FAN_SPEED_ENTRIES) {
fprintf(stderr, "Bad index.\n");
return -1;
}
return print_fan(idx);
}
return 0;
}
int cmd_pwm_set_fan_rpm(int argc, char *argv[])
{
struct ec_params_pwm_set_fan_target_rpm p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr,
"Usage: %s <targetrpm>\n", argv[0]);
return -1;
}
p.rpm = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad RPM.\n");
return -1;
}
rv = ec_command(EC_CMD_PWM_SET_FAN_TARGET_RPM, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Fan target RPM set.\n");
return 0;
}
int cmd_pwm_get_keyboard_backlight(int argc, char *argv[])
{
struct ec_response_pwm_get_keyboard_backlight r;
int rv;
rv = ec_command(EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT, 0,
NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
if (r.enabled == 1)
printf("Current keyboard backlight percent: %d\n", r.percent);
else
printf("Keyboard backlight disabled.\n");
return 0;
}
int cmd_pwm_set_keyboard_backlight(int argc, char *argv[])
{
struct ec_params_pwm_set_keyboard_backlight p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <percent>\n", argv[0]);
return -1;
}
p.percent = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad percent.\n");
return -1;
}
rv = ec_command(EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Keyboard backlight set.\n");
return 0;
}
int cmd_fanduty(int argc, char *argv[])
{
struct ec_params_pwm_set_fan_duty p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr,
"Usage: %s <targetrpm>\n", argv[0]);
return -1;
}
p.percent = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad percent arg.\n");
return -1;
}
rv = ec_command(EC_CMD_PWM_SET_FAN_DUTY, 0, &p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Fan duty cycle set.\n");
return 0;
}
#define LBMSG(state) #state
#include "lightbar_msg_list.h"
static const char * const lightbar_cmds[] = {
LIGHTBAR_MSG_LIST
};
#undef LBMSG
/* This needs to match the values defined in lightbar.h. I'd like to
* define this in one and only one place, but I can't think of a good way to do
* that without adding bunch of complexity. This will do for now.
*/
#define LB_SIZES(SUBCMD) { \
sizeof(((struct ec_params_lightbar *)0)->SUBCMD) \
+ sizeof(((struct ec_params_lightbar *)0)->cmd), \
sizeof(((struct ec_response_lightbar *)0)->SUBCMD) }
static const struct {
uint8_t insize;
uint8_t outsize;
} lb_command_paramcount[] = {
LB_SIZES(dump),
LB_SIZES(off),
LB_SIZES(on),
LB_SIZES(init),
LB_SIZES(set_brightness),
LB_SIZES(seq),
LB_SIZES(reg),
LB_SIZES(set_rgb),
LB_SIZES(get_seq),
LB_SIZES(demo),
LB_SIZES(get_params_v0),
LB_SIZES(set_params_v0),
LB_SIZES(version),
LB_SIZES(get_brightness),
LB_SIZES(get_rgb),
LB_SIZES(get_demo),
LB_SIZES(get_params_v1),
LB_SIZES(set_params_v1),
LB_SIZES(set_program),
};
#undef LB_SIZES
static int lb_help(const char *cmd)
{
printf("Usage:\n");
printf(" %s - dump all regs\n", cmd);
printf(" %s off - enter standby\n", cmd);
printf(" %s on - leave standby\n", cmd);
printf(" %s init - load default vals\n", cmd);
printf(" %s brightness [NUM] - get/set intensity (0-ff)\n", cmd);
printf(" %s seq [NUM|SEQUENCE] - run given pattern"
" (no arg for list)\n", cmd);
printf(" %s CTRL REG VAL - set LED controller regs\n", cmd);
printf(" %s LED RED GREEN BLUE - set color manually"
" (LED=4 for all)\n", cmd);
printf(" %s LED - get current LED color\n", cmd);
printf(" %s demo [0|1] - turn demo mode on & off\n", cmd);
printf(" %s params [setfile] - get params"
" (or set from file)\n", cmd);
printf(" %s program file - load program from file\n", cmd);
return 0;
}
static uint8_t lb_find_msg_by_name(const char *str)
{
uint8_t i;
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
if (!strcasecmp(str, lightbar_cmds[i]))
return i;
return LIGHTBAR_NUM_SEQUENCES;
}
static int lb_do_cmd(enum lightbar_command cmd,
struct ec_params_lightbar *in,
struct ec_response_lightbar *out)
{
int rv;
in->cmd = cmd;
rv = ec_command(EC_CMD_LIGHTBAR_CMD, 0,
in, lb_command_paramcount[cmd].insize,
out, lb_command_paramcount[cmd].outsize);
return (rv < 0 ? rv : 0);
}
static int lb_show_msg_names(void)
{
int i, current_state;
struct ec_params_lightbar param;
struct ec_response_lightbar resp;
i = lb_do_cmd(LIGHTBAR_CMD_GET_SEQ, &param, &resp);
if (i < 0)
return i;
current_state = resp.get_seq.num;
printf("sequence names:");
for (i = 0; i < LIGHTBAR_NUM_SEQUENCES; i++)
printf(" %s", lightbar_cmds[i]);
printf("\nCurrent = 0x%x %s\n", current_state,
lightbar_cmds[current_state]);
return 0;
}
static int lb_read_params_v0_from_file(const char *filename,
struct lightbar_params_v0 *p)
{
FILE *fp;
char buf[80];
int val[4];
int r = 1;
int line = 0;
int want, got;
int i;
fp = fopen(filename, "rb");
if (!fp) {
fprintf(stderr, "Can't open %s: %s\n",
filename, strerror(errno));
return 1;
}
/* We must read the correct number of params from each line */
#define READ(N) do { \
line++; \
want = (N); \
got = -1; \
if (!fgets(buf, sizeof(buf), fp)) \
goto done; \
got = sscanf(buf, "%i %i %i %i", \
&val[0], &val[1], &val[2], &val[3]); \
if (want != got) \
goto done; \
} while (0)
/* Do it */
READ(1); p->google_ramp_up = val[0];
READ(1); p->google_ramp_down = val[0];
READ(1); p->s3s0_ramp_up = val[0];
READ(1); p->s0_tick_delay[0] = val[0];
READ(1); p->s0_tick_delay[1] = val[0];
READ(1); p->s0a_tick_delay[0] = val[0];
READ(1); p->s0a_tick_delay[1] = val[0];
READ(1); p->s0s3_ramp_down = val[0];
READ(1); p->s3_sleep_for = val[0];
READ(1); p->s3_ramp_up = val[0];
READ(1); p->s3_ramp_down = val[0];
READ(1); p->new_s0 = val[0];
READ(2);
p->osc_min[0] = val[0];
p->osc_min[1] = val[1];
READ(2);
p->osc_max[0] = val[0];
p->osc_max[1] = val[1];
READ(2);
p->w_ofs[0] = val[0];
p->w_ofs[1] = val[1];
READ(2);
p->bright_bl_off_fixed[0] = val[0];
p->bright_bl_off_fixed[1] = val[1];
READ(2);
p->bright_bl_on_min[0] = val[0];
p->bright_bl_on_min[1] = val[1];
READ(2);
p->bright_bl_on_max[0] = val[0];
p->bright_bl_on_max[1] = val[1];
READ(3);
p->battery_threshold[0] = val[0];
p->battery_threshold[1] = val[1];
p->battery_threshold[2] = val[2];
READ(4);
p->s0_idx[0][0] = val[0];
p->s0_idx[0][1] = val[1];
p->s0_idx[0][2] = val[2];
p->s0_idx[0][3] = val[3];
READ(4);
p->s0_idx[1][0] = val[0];
p->s0_idx[1][1] = val[1];
p->s0_idx[1][2] = val[2];
p->s0_idx[1][3] = val[3];
READ(4);
p->s3_idx[0][0] = val[0];
p->s3_idx[0][1] = val[1];
p->s3_idx[0][2] = val[2];
p->s3_idx[0][3] = val[3];
READ(4);
p->s3_idx[1][0] = val[0];
p->s3_idx[1][1] = val[1];
p->s3_idx[1][2] = val[2];
p->s3_idx[1][3] = val[3];
for (i = 0; i < ARRAY_SIZE(p->color); i++) {
READ(3);
p->color[i].r = val[0];
p->color[i].g = val[1];
p->color[i].b = val[2];
}
#undef READ
/* Yay */
r = 0;
done:
if (r)
fprintf(stderr, "problem with line %d: wanted %d, got %d\n",
line, want, got);
fclose(fp);
return r;
}
static void lb_show_params_v0(const struct lightbar_params_v0 *p)
{
int i;
printf("%d\t\t# .google_ramp_up\n", p->google_ramp_up);
printf("%d\t\t# .google_ramp_down\n", p->google_ramp_down);
printf("%d\t\t# .s3s0_ramp_up\n", p->s3s0_ramp_up);
printf("%d\t\t# .s0_tick_delay (battery)\n", p->s0_tick_delay[0]);
printf("%d\t\t# .s0_tick_delay (AC)\n", p->s0_tick_delay[1]);
printf("%d\t\t# .s0a_tick_delay (battery)\n", p->s0a_tick_delay[0]);
printf("%d\t\t# .s0a_tick_delay (AC)\n", p->s0a_tick_delay[1]);
printf("%d\t\t# .s0s3_ramp_down\n", p->s0s3_ramp_down);
printf("%d\t# .s3_sleep_for\n", p->s3_sleep_for);
printf("%d\t\t# .s3_ramp_up\n", p->s3_ramp_up);
printf("%d\t\t# .s3_ramp_down\n", p->s3_ramp_down);
printf("%d\t\t# .new_s0\n", p->new_s0);
printf("0x%02x 0x%02x\t# .osc_min (battery, AC)\n",
p->osc_min[0], p->osc_min[1]);
printf("0x%02x 0x%02x\t# .osc_max (battery, AC)\n",
p->osc_max[0], p->osc_max[1]);
printf("%d %d\t\t# .w_ofs (battery, AC)\n",
p->w_ofs[0], p->w_ofs[1]);
printf("0x%02x 0x%02x\t# .bright_bl_off_fixed (battery, AC)\n",
p->bright_bl_off_fixed[0], p->bright_bl_off_fixed[1]);
printf("0x%02x 0x%02x\t# .bright_bl_on_min (battery, AC)\n",
p->bright_bl_on_min[0], p->bright_bl_on_min[1]);
printf("0x%02x 0x%02x\t# .bright_bl_on_max (battery, AC)\n",
p->bright_bl_on_max[0], p->bright_bl_on_max[1]);
printf("%d %d %d\t\t# .battery_threshold\n",
p->battery_threshold[0],
p->battery_threshold[1],
p->battery_threshold[2]);
printf("%d %d %d %d\t\t# .s0_idx[] (battery)\n",
p->s0_idx[0][0], p->s0_idx[0][1],
p->s0_idx[0][2], p->s0_idx[0][3]);
printf("%d %d %d %d\t\t# .s0_idx[] (AC)\n",
p->s0_idx[1][0], p->s0_idx[1][1],
p->s0_idx[1][2], p->s0_idx[1][3]);
printf("%d %d %d %d\t# .s3_idx[] (battery)\n",
p->s3_idx[0][0], p->s3_idx[0][1],
p->s3_idx[0][2], p->s3_idx[0][3]);
printf("%d %d %d %d\t# .s3_idx[] (AC)\n",
p->s3_idx[1][0], p->s3_idx[1][1],
p->s3_idx[1][2], p->s3_idx[1][3]);
for (i = 0; i < ARRAY_SIZE(p->color); i++)
printf("0x%02x 0x%02x 0x%02x\t# color[%d]\n",
p->color[i].r,
p->color[i].g,
p->color[i].b, i);
}
static int lb_read_params_v1_from_file(const char *filename,
struct lightbar_params_v1 *p)
{
FILE *fp;
char buf[80];
int val[4];
int r = 1;
int line = 0;
int want, got;
int i;
fp = fopen(filename, "rb");
if (!fp) {
fprintf(stderr, "Can't open %s: %s\n",
filename, strerror(errno));
return 1;
}
/* We must read the correct number of params from each line */
#define READ(N) do { \
line++; \
want = (N); \
got = -1; \
if (!fgets(buf, sizeof(buf), fp)) \
goto done; \
got = sscanf(buf, "%i %i %i %i", \
&val[0], &val[1], &val[2], &val[3]); \
if (want != got) \
goto done; \
} while (0)
/* Do it */
READ(1); p->google_ramp_up = val[0];
READ(1); p->google_ramp_down = val[0];
READ(1); p->s3s0_ramp_up = val[0];
READ(1); p->s0_tick_delay[0] = val[0];
READ(1); p->s0_tick_delay[1] = val[0];
READ(1); p->s0a_tick_delay[0] = val[0];
READ(1); p->s0a_tick_delay[1] = val[0];
READ(1); p->s0s3_ramp_down = val[0];
READ(1); p->s3_sleep_for = val[0];
READ(1); p->s3_ramp_up = val[0];
READ(1); p->s3_ramp_down = val[0];
READ(1); p->tap_tick_delay = val[0];
READ(1); p->tap_display_time = val[0];
READ(1); p->tap_pct_red = val[0];
READ(1); p->tap_pct_green = val[0];
READ(1); p->tap_seg_min_on = val[0];
READ(1); p->tap_seg_max_on = val[0];
READ(1); p->tap_seg_osc = val[0];
READ(3);
p->tap_idx[0] = val[0];
p->tap_idx[1] = val[1];
p->tap_idx[2] = val[2];
READ(2);
p->osc_min[0] = val[0];
p->osc_min[1] = val[1];
READ(2);
p->osc_max[0] = val[0];
p->osc_max[1] = val[1];
READ(2);
p->w_ofs[0] = val[0];
p->w_ofs[1] = val[1];
READ(2);
p->bright_bl_off_fixed[0] = val[0];
p->bright_bl_off_fixed[1] = val[1];
READ(2);
p->bright_bl_on_min[0] = val[0];
p->bright_bl_on_min[1] = val[1];
READ(2);
p->bright_bl_on_max[0] = val[0];
p->bright_bl_on_max[1] = val[1];
READ(3);
p->battery_threshold[0] = val[0];
p->battery_threshold[1] = val[1];
p->battery_threshold[2] = val[2];
READ(4);
p->s0_idx[0][0] = val[0];
p->s0_idx[0][1] = val[1];
p->s0_idx[0][2] = val[2];
p->s0_idx[0][3] = val[3];
READ(4);
p->s0_idx[1][0] = val[0];
p->s0_idx[1][1] = val[1];
p->s0_idx[1][2] = val[2];
p->s0_idx[1][3] = val[3];
READ(4);
p->s3_idx[0][0] = val[0];
p->s3_idx[0][1] = val[1];
p->s3_idx[0][2] = val[2];
p->s3_idx[0][3] = val[3];
READ(4);
p->s3_idx[1][0] = val[0];
p->s3_idx[1][1] = val[1];
p->s3_idx[1][2] = val[2];
p->s3_idx[1][3] = val[3];
for (i = 0; i < ARRAY_SIZE(p->color); i++) {
READ(3);
p->color[i].r = val[0];
p->color[i].g = val[1];
p->color[i].b = val[2];
}
#undef READ
/* Yay */
r = 0;
done:
if (r)
fprintf(stderr, "problem with line %d: wanted %d, got %d\n",
line, want, got);
fclose(fp);
return r;
}
static void lb_show_params_v1(const struct lightbar_params_v1 *p)
{
int i;
printf("%d\t\t# .google_ramp_up\n", p->google_ramp_up);
printf("%d\t\t# .google_ramp_down\n", p->google_ramp_down);
printf("%d\t\t# .s3s0_ramp_up\n", p->s3s0_ramp_up);
printf("%d\t\t# .s0_tick_delay (battery)\n", p->s0_tick_delay[0]);
printf("%d\t\t# .s0_tick_delay (AC)\n", p->s0_tick_delay[1]);
printf("%d\t\t# .s0a_tick_delay (battery)\n", p->s0a_tick_delay[0]);
printf("%d\t\t# .s0a_tick_delay (AC)\n", p->s0a_tick_delay[1]);
printf("%d\t\t# .s0s3_ramp_down\n", p->s0s3_ramp_down);
printf("%d\t\t# .s3_sleep_for\n", p->s3_sleep_for);
printf("%d\t\t# .s3_ramp_up\n", p->s3_ramp_up);
printf("%d\t\t# .s3_ramp_down\n", p->s3_ramp_down);
printf("%d\t\t# .tap_tick_delay\n", p->tap_tick_delay);
printf("%d\t\t# .tap_display_time\n", p->tap_display_time);
printf("%d\t\t# .tap_pct_red\n", p->tap_pct_red);
printf("%d\t\t# .tap_pct_green\n", p->tap_pct_green);
printf("%d\t\t# .tap_seg_min_on\n", p->tap_seg_min_on);
printf("%d\t\t# .tap_seg_max_on\n", p->tap_seg_max_on);
printf("%d\t\t# .tap_seg_osc\n", p->tap_seg_osc);
printf("%d %d %d\t\t# .tap_idx\n",
p->tap_idx[0], p->tap_idx[1], p->tap_idx[2]);
printf("0x%02x 0x%02x\t# .osc_min (battery, AC)\n",
p->osc_min[0], p->osc_min[1]);
printf("0x%02x 0x%02x\t# .osc_max (battery, AC)\n",
p->osc_max[0], p->osc_max[1]);
printf("%d %d\t\t# .w_ofs (battery, AC)\n",
p->w_ofs[0], p->w_ofs[1]);
printf("0x%02x 0x%02x\t# .bright_bl_off_fixed (battery, AC)\n",
p->bright_bl_off_fixed[0], p->bright_bl_off_fixed[1]);
printf("0x%02x 0x%02x\t# .bright_bl_on_min (battery, AC)\n",
p->bright_bl_on_min[0], p->bright_bl_on_min[1]);
printf("0x%02x 0x%02x\t# .bright_bl_on_max (battery, AC)\n",
p->bright_bl_on_max[0], p->bright_bl_on_max[1]);
printf("%d %d %d\t# .battery_threshold\n",
p->battery_threshold[0],
p->battery_threshold[1],
p->battery_threshold[2]);
printf("%d %d %d %d\t\t# .s0_idx[] (battery)\n",
p->s0_idx[0][0], p->s0_idx[0][1],
p->s0_idx[0][2], p->s0_idx[0][3]);
printf("%d %d %d %d\t\t# .s0_idx[] (AC)\n",
p->s0_idx[1][0], p->s0_idx[1][1],
p->s0_idx[1][2], p->s0_idx[1][3]);
printf("%d %d %d %d\t# .s3_idx[] (battery)\n",
p->s3_idx[0][0], p->s3_idx[0][1],
p->s3_idx[0][2], p->s3_idx[0][3]);
printf("%d %d %d %d\t# .s3_idx[] (AC)\n",
p->s3_idx[1][0], p->s3_idx[1][1],
p->s3_idx[1][2], p->s3_idx[1][3]);
for (i = 0; i < ARRAY_SIZE(p->color); i++)
printf("0x%02x 0x%02x 0x%02x\t# color[%d]\n",
p->color[i].r,
p->color[i].g,
p->color[i].b, i);
}
static int lb_load_program(const char *filename, struct lb_program *prog)
{
FILE *fp;
size_t got;
int rc;
fp = fopen(filename, "rb");
if (!fp) {
fprintf(stderr, "Can't open %s: %s\n",
filename, strerror(errno));
return 1;
}
rc = fseek(fp, 0, SEEK_END);
if (rc) {
fprintf(stderr, "Couldn't find end of file %s",
filename);
fclose(fp);
return 1;
}
rc = (int) ftell(fp);
if (rc > LB_PROG_LEN) {
fprintf(stderr, "File %s is too long, aborting\n", filename);
fclose(fp);
return 1;
}
rewind(fp);
memset(prog->data, 0, LB_PROG_LEN);
got = fread(prog->data, 1, LB_PROG_LEN, fp);
if (rc != got)
fprintf(stderr, "Warning: did not read entire file\n");
prog->size = got;
fclose(fp);
return 0;
}
static int cmd_lightbar_params_v0(int argc, char **argv)
{
struct ec_params_lightbar param;
struct ec_response_lightbar resp;
int r;
if (argc > 2) {
r = lb_read_params_v0_from_file(argv[2],
&param.set_params_v0);
if (r)
return r;
return lb_do_cmd(LIGHTBAR_CMD_SET_PARAMS_V0,
&param, &resp);
}
r = lb_do_cmd(LIGHTBAR_CMD_GET_PARAMS_V0, &param, &resp);
if (!r)
lb_show_params_v0(&resp.get_params_v0);
return r;
}
static int cmd_lightbar_params_v1(int argc, char **argv)
{
struct ec_params_lightbar param;
struct ec_response_lightbar resp;
int r;
if (argc > 2) {
r = lb_read_params_v1_from_file(argv[2],
&param.set_params_v1);
if (r)
return r;
return lb_do_cmd(LIGHTBAR_CMD_SET_PARAMS_V1,
&param, &resp);
}
r = lb_do_cmd(LIGHTBAR_CMD_GET_PARAMS_V1, &param, &resp);
if (!r)
lb_show_params_v1(&resp.get_params_v1);
return r;
}
static int cmd_lightbar(int argc, char **argv)
{
int i, r;
struct ec_params_lightbar param;
struct ec_response_lightbar resp;
if (1 == argc) { /* no args = dump 'em all */
r = lb_do_cmd(LIGHTBAR_CMD_DUMP, &param, &resp);
if (r)
return r;
for (i = 0; i < ARRAY_SIZE(resp.dump.vals); i++) {
printf(" %02x %02x %02x\n",
resp.dump.vals[i].reg,
resp.dump.vals[i].ic0,
resp.dump.vals[i].ic1);
}
return 0;
}
if (argc == 2 && !strcasecmp(argv[1], "init"))
return lb_do_cmd(LIGHTBAR_CMD_INIT, &param, &resp);
if (argc == 2 && !strcasecmp(argv[1], "off"))
return lb_do_cmd(LIGHTBAR_CMD_OFF, &param, &resp);
if (argc == 2 && !strcasecmp(argv[1], "on"))
return lb_do_cmd(LIGHTBAR_CMD_ON, &param, &resp);
if (!strcasecmp(argv[1], "params0"))
return cmd_lightbar_params_v0(argc, argv);
if (!strcasecmp(argv[1], "params1"))
return cmd_lightbar_params_v1(argc, argv);
if (!strcasecmp(argv[1], "params")) {
/* Just try them both */
fprintf(stderr, "trying params1 ...\n");
if (0 == cmd_lightbar_params_v1(argc, argv))
return 0;
fprintf(stderr, "trying params0 ...\n");
return cmd_lightbar_params_v0(argc, argv);
}
if (!strcasecmp(argv[1], "version")) {
r = lb_do_cmd(LIGHTBAR_CMD_VERSION, &param, &resp);
if (!r)
printf("version %d flags 0x%x\n",
resp.version.num, resp.version.flags);
return r;
}
if (argc > 1 && !strcasecmp(argv[1], "brightness")) {
char *e;
int rv;
if (argc > 2) {
param.set_brightness.num = 0xff &
strtoul(argv[2], &e, 16);
return lb_do_cmd(LIGHTBAR_CMD_SET_BRIGHTNESS,
&param, &resp);
}
rv = lb_do_cmd(LIGHTBAR_CMD_GET_BRIGHTNESS,
&param, &resp);
if (rv)
return rv;
printf("%02x\n", resp.get_brightness.num);
return 0;
}
if (argc > 1 && !strcasecmp(argv[1], "demo")) {
int rv;
if (argc > 2) {
if (!strcasecmp(argv[2], "on") || argv[2][0] == '1')
param.demo.num = 1;
else if (!strcasecmp(argv[2], "off") ||
argv[2][0] == '0')
param.demo.num = 0;
else {
fprintf(stderr, "Invalid arg\n");
return -1;
}
return lb_do_cmd(LIGHTBAR_CMD_DEMO, &param, &resp);
}
rv = lb_do_cmd(LIGHTBAR_CMD_GET_DEMO, &param, &resp);
if (rv)
return rv;
printf("%s\n", resp.get_demo.num ? "on" : "off");
return 0;
}
if (argc >= 2 && !strcasecmp(argv[1], "seq")) {
char *e;
uint8_t num;
if (argc == 2)
return lb_show_msg_names();
num = 0xff & strtoul(argv[2], &e, 16);
if (e && *e)
num = lb_find_msg_by_name(argv[2]);
if (num >= LIGHTBAR_NUM_SEQUENCES) {
fprintf(stderr, "Invalid arg\n");
return -1;
}
param.seq.num = num;
return lb_do_cmd(LIGHTBAR_CMD_SEQ, &param, &resp);
}
if (argc >= 3 && !strcasecmp(argv[1], "program")) {
lb_load_program(argv[2], &param.set_program);
return lb_do_cmd(LIGHTBAR_CMD_SET_PROGRAM, &param, &resp);
}
if (argc == 4) {
char *e;
param.reg.ctrl = 0xff & strtoul(argv[1], &e, 16);
param.reg.reg = 0xff & strtoul(argv[2], &e, 16);
param.reg.value = 0xff & strtoul(argv[3], &e, 16);
return lb_do_cmd(LIGHTBAR_CMD_REG, &param, &resp);
}
if (argc == 5) {
char *e;
param.set_rgb.led = strtoul(argv[1], &e, 16);
param.set_rgb.red = strtoul(argv[2], &e, 16);
param.set_rgb.green = strtoul(argv[3], &e, 16);
param.set_rgb.blue = strtoul(argv[4], &e, 16);
return lb_do_cmd(LIGHTBAR_CMD_SET_RGB, &param, &resp);
}
/* Only thing left is to try to read an LED value */
if (argc == 2) {
char *e;
param.get_rgb.led = strtoul(argv[1], &e, 0);
if (!(e && *e)) {
r = lb_do_cmd(LIGHTBAR_CMD_GET_RGB, &param, &resp);
if (r)
return r;
printf("%02x %02x %02x\n",
resp.get_rgb.red,
resp.get_rgb.green,
resp.get_rgb.blue);
return 0;
}
}
return lb_help(argv[0]);
}
/* Create an array to store sizes of motion sense param and response structs. */
#define MS_SIZES(SUBCMD) { \
sizeof(((struct ec_params_motion_sense *)0)->SUBCMD) \
+ sizeof(((struct ec_params_motion_sense *)0)->cmd), \
sizeof(((struct ec_response_motion_sense *)0)->SUBCMD) }
static const struct {
uint8_t insize;
uint8_t outsize;
} ms_command_sizes[] = {
MS_SIZES(dump),
MS_SIZES(info),
MS_SIZES(ec_rate),
MS_SIZES(sensor_odr),
MS_SIZES(sensor_range),
MS_SIZES(kb_wake_angle),
};
BUILD_ASSERT(ARRAY_SIZE(ms_command_sizes) == MOTIONSENSE_NUM_CMDS);
#undef MS_SIZES
static int ms_help(const char *cmd)
{
printf("Usage:\n");
printf(" %s - dump all motion data\n", cmd);
printf(" %s active - print active flag\n", cmd);
printf(" %s info NUM - print sensor info\n", cmd);
printf(" %s ec_rate [RATE_MS] - set/get sample rate\n", cmd);
printf(" %s odr NUM [ODR [ROUNDUP]] - set/get sensor ODR\n", cmd);
printf(" %s range NUM [RANGE [ROUNDUP]]- set/get sensor range\n", cmd);
printf(" %s kb_wake NUM - set/get KB wake ang\n", cmd);
return 0;
}
static int cmd_motionsense(int argc, char **argv)
{
int i, rv;
struct ec_params_motion_sense param;
struct ec_response_motion_sense resp;
char *e;
/* No motionsense command has more than 5 args. */
if (argc > 5)
return ms_help(argv[0]);
if (argc == 1) {
/* No args, dump motion data. */
param.cmd = MOTIONSENSE_CMD_DUMP;
rv = ec_command(EC_CMD_MOTION_SENSE_CMD, 0,
&param, ms_command_sizes[param.cmd].insize,
&resp, ms_command_sizes[param.cmd].outsize);
if (rv < 0)
return rv;
if (resp.dump.module_flags & MOTIONSENSE_MODULE_FLAG_ACTIVE)
printf("Motion sensing active\n");
else
printf("Motion sensing inactive\n");
for (i = 0; i < EC_MOTION_SENSOR_COUNT; i++) {
printf("Sensor %d: ", i);
if (resp.dump.sensor_flags[i] &
MOTIONSENSE_SENSOR_FLAG_PRESENT)
printf("%d\t%d\t%d\n", resp.dump.data[3*i],
resp.dump.data[3*i+1],
resp.dump.data[3*i+2]);
else
/*
* Warning: the following string printed out
* is read by an autotest. Do not change string
* without consulting autotest for
* kernel_CrosECSysfsAccel.
*/
printf("None\n");
}
return 0;
}
if (argc == 2 && !strcasecmp(argv[1], "active")) {
param.cmd = MOTIONSENSE_CMD_DUMP;
rv = ec_command(EC_CMD_MOTION_SENSE_CMD, 0,
&param, ms_command_sizes[param.cmd].insize,
&resp, ms_command_sizes[param.cmd].outsize);
/*
* Warning: the following strings printed out are read in an
* autotest. Do not change string without consulting autotest
* for kernel_CrosECSysfsAccel.
*/
if (resp.dump.module_flags & MOTIONSENSE_MODULE_FLAG_ACTIVE)
printf("1\n");
else
printf("0\n");
return 0;
}
if (argc == 3 && !strcasecmp(argv[1], "info")) {
param.cmd = MOTIONSENSE_CMD_INFO;
param.sensor_odr.sensor_num = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
rv = ec_command(EC_CMD_MOTION_SENSE_CMD, 0,
&param, ms_command_sizes[param.cmd].insize,
&resp, ms_command_sizes[param.cmd].outsize);
if (rv < 0)
return rv;
printf("Type: ");
switch (resp.info.type) {
case MOTIONSENSE_TYPE_ACCEL:
printf("accel\n");
break;
case MOTIONSENSE_TYPE_GYRO:
printf("gyro\n");
break;
default:
printf("unknown\n");
}
printf("Location: ");
switch (resp.info.location) {
case MOTIONSENSE_LOC_BASE:
printf("base\n");
break;
case MOTIONSENSE_LOC_LID:
printf("lid\n");
break;
default:
printf("unknown\n");
}
printf("Chip: ");
switch (resp.info.chip) {
case MOTIONSENSE_CHIP_KXCJ9:
printf("kxcj9\n");
break;
default:
printf("unknown\n");
}
return 0;
}
if (argc < 4 && !strcasecmp(argv[1], "ec_rate")) {
param.cmd = MOTIONSENSE_CMD_EC_RATE;
param.ec_rate.data = EC_MOTION_SENSE_NO_VALUE;
if (argc == 3) {
param.ec_rate.data = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
}
rv = ec_command(EC_CMD_MOTION_SENSE_CMD, 0,
&param, ms_command_sizes[param.cmd].insize,
&resp, ms_command_sizes[param.cmd].outsize);
if (rv < 0)
return rv;
printf("%d\n", resp.ec_rate.ret);
return 0;
}
if (argc > 2 && !strcasecmp(argv[1], "odr")) {
param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
param.sensor_odr.data = EC_MOTION_SENSE_NO_VALUE;
param.sensor_odr.roundup = 1;
param.sensor_odr.sensor_num = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
if (argc >= 4) {
param.sensor_odr.data = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
}
if (argc == 5) {
param.sensor_odr.roundup = strtol(argv[4], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
}
rv = ec_command(EC_CMD_MOTION_SENSE_CMD, 0,
&param, ms_command_sizes[param.cmd].insize,
&resp, ms_command_sizes[param.cmd].outsize);
if (rv < 0)
return rv;
printf("%d\n", resp.sensor_odr.ret);
return 0;
}
if (argc > 2 && !strcasecmp(argv[1], "range")) {
param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE;
param.sensor_range.data = EC_MOTION_SENSE_NO_VALUE;
param.sensor_odr.roundup = 1;
param.sensor_range.sensor_num = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
if (argc >= 4) {
param.sensor_range.data = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
}
if (argc == 5) {
param.sensor_odr.roundup = strtol(argv[4], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
}
rv = ec_command(EC_CMD_MOTION_SENSE_CMD, 0,
&param, ms_command_sizes[param.cmd].insize,
&resp, ms_command_sizes[param.cmd].outsize);
if (rv < 0)
return rv;
printf("%d\n", resp.sensor_range.ret);
return 0;
}
if (argc < 4 && !strcasecmp(argv[1], "kb_wake")) {
param.cmd = MOTIONSENSE_CMD_KB_WAKE_ANGLE;
param.kb_wake_angle.data = EC_MOTION_SENSE_NO_VALUE;
if (argc == 3) {
param.kb_wake_angle.data = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad %s arg.\n", argv[1]);
return -1;
}
}
rv = ec_command(EC_CMD_MOTION_SENSE_CMD, 0,
&param, ms_command_sizes[param.cmd].insize,
&resp, ms_command_sizes[param.cmd].outsize);
if (rv < 0)
return rv;
printf("%d\n", resp.kb_wake_angle.ret);
return 0;
}
return ms_help(argv[0]);
}
static int find_led_color_by_name(const char *color)
{
int i;
for (i = 0; i < EC_LED_COLOR_COUNT; ++i)
if (!strcasecmp(color, led_color_names[i]))
return i;
return -1;
}
static int find_led_id_by_name(const char *led)
{
int i;
for (i = 0; i < EC_LED_ID_COUNT; ++i)
if (!strcasecmp(led, led_names[i]))
return i;
return -1;
}
int cmd_led(int argc, char *argv[])
{
struct ec_params_led_control p;
struct ec_response_led_control r;
char *e, *ptr;
int rv, i, j;
memset(p.brightness, 0, sizeof(p.brightness));
p.flags = 0;
if (argc < 3) {
fprintf(stderr,
"Usage: %s <name> <query | auto | "
"off | <color> | <color>=<value>...>\n", argv[0]);
return -1;
}
p.led_id = find_led_id_by_name(argv[1]);
if (p.led_id == (uint8_t)-1) {
fprintf(stderr, "Bad LED name: %s\n", argv[1]);
fprintf(stderr, "Valid LED names: ");
for (i = 0; i < EC_LED_ID_COUNT; i++)
fprintf(stderr, "%s ", led_names[i]);
fprintf(stderr, "\n");
return -1;
}
if (!strcasecmp(argv[2], "query")) {
p.flags = EC_LED_FLAGS_QUERY;
rv = ec_command(EC_CMD_LED_CONTROL, 1, &p, sizeof(p),
&r, sizeof(r));
printf("Brightness range for LED %d:\n", p.led_id);
if (rv < 0) {
fprintf(stderr, "Error: Unsupported LED.\n");
return rv;
}
for (i = 0; i < EC_LED_COLOR_COUNT; ++i)
printf("\t%s\t: 0x%x\n",
led_color_names[i],
r.brightness_range[i]);
return 0;
}
if (!strcasecmp(argv[2], "off")) {
/* Brightness initialized to 0 for each color. */
} else if (!strcasecmp(argv[2], "auto")) {
p.flags = EC_LED_FLAGS_AUTO;
} else if ((i = find_led_color_by_name(argv[2])) != -1) {
p.brightness[i] = 0xff;
} else {
for (i = 2; i < argc; ++i) {
ptr = strtok(argv[i], "=");
j = find_led_color_by_name(ptr);
if (j == -1) {
fprintf(stderr, "Bad color name: %s\n", ptr);
fprintf(stderr, "Valid colors: ");
for (j = 0; j < EC_LED_COLOR_COUNT; j++)
fprintf(stderr, "%s ",
led_color_names[j]);
fprintf(stderr, "\n");
return -1;
}
ptr = strtok(NULL, "=");
if (ptr == NULL) {
fprintf(stderr, "Missing brightness value\n");
return -1;
}
p.brightness[j] = strtol(ptr, &e, 0);
if (e && *e) {
fprintf(stderr, "Bad brightness: %s\n", ptr);
return -1;
}
}
}
rv = ec_command(EC_CMD_LED_CONTROL, 1, &p, sizeof(p), &r, sizeof(r));
return (rv < 0 ? rv : 0);
}
int cmd_usb_charge_set_mode(int argc, char *argv[])
{
struct ec_params_usb_charge_set_mode p;
char *e;
int rv;
if (argc != 3) {
fprintf(stderr,
"Usage: %s <port_id> <mode_id>\n", argv[0]);
return -1;
}
p.usb_port_id = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad port ID.\n");
return -1;
}
p.mode = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mode ID.\n");
return -1;
}
printf("Setting port %d to mode %d...\n", p.usb_port_id, p.mode);
rv = ec_command(EC_CMD_USB_CHARGE_SET_MODE, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("USB charging mode set.\n");
return 0;
}
int cmd_usb_mux(int argc, char *argv[])
{
struct ec_params_usb_mux p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mux>\n", argv[0]);
return -1;
}
p.mux = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mux value.\n");
return -1;
}
rv = ec_command(EC_CMD_USB_MUX, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Set USB mux to 0x%x.\n", p.mux);
return 0;
}
int cmd_usb_pd(int argc, char *argv[])
{
const char *role_str[] = {"", "toggle", "toggle-off", "sink", "source"};
const char *mux_str[] = {"", "none", "usb", "dp", "dock", "auto"};
struct ec_params_usb_pd_control p;
struct ec_response_usb_pd_control *r =
(struct ec_response_usb_pd_control *)ec_inbuf;
int rv, i, j;
int option_ok;
char *e;
BUILD_ASSERT(ARRAY_SIZE(role_str) == USB_PD_CTRL_ROLE_COUNT);
BUILD_ASSERT(ARRAY_SIZE(mux_str) == USB_PD_CTRL_MUX_COUNT);
p.role = USB_PD_CTRL_ROLE_NO_CHANGE;
p.mux = USB_PD_CTRL_MUX_NO_CHANGE;
if (argc < 2) {
fprintf(stderr, "No port specified.\n");
return -1;
}
p.port = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Invalid param (port)\n");
return -1;
}
for (i = 2; i < argc; ++i) {
option_ok = 0;
if (!strcmp(argv[i], "auto")) {
if (argc != 3) {
fprintf(stderr, "\"auto\" may not be used "
"with other options.\n");
return -1;
}
p.role = USB_PD_CTRL_ROLE_TOGGLE_ON;
p.mux = USB_PD_CTRL_MUX_AUTO;
continue;
}
for (j = 0; j < ARRAY_SIZE(role_str); ++j) {
if (!strcmp(argv[i], role_str[j])) {
if (p.role != USB_PD_CTRL_ROLE_NO_CHANGE) {
fprintf(stderr,
"Only one role allowed.\n");
return -1;
}
p.role = j;
option_ok = 1;
break;
}
}
if (option_ok)
continue;
for (j = 0; j < ARRAY_SIZE(mux_str); ++j) {
if (!strcmp(argv[i], mux_str[j])) {
if (p.mux != USB_PD_CTRL_MUX_NO_CHANGE) {
fprintf(stderr,
"Only one mux type allowed.\n");
return -1;
}
p.mux = j;
option_ok = 1;
break;
}
}
if (!option_ok) {
fprintf(stderr, "Unknown option: %s\n", argv[i]);
return -1;
}
}
rv = ec_command(EC_CMD_USB_PD_CONTROL, 0, &p, sizeof(p),
ec_inbuf, ec_max_insize);
if ((rv >= 0) && (argc == 2))
printf("Port C%d is %sabled, Role:%s Polarity:CC%d State:%d\n",
p.port, (r->enabled) ? "en" : "dis",
r->role == PD_ROLE_SOURCE ? "SRC" : "SNK",
r->polarity + 1, r->state);
return (rv < 0 ? rv : 0);
}
int cmd_kbpress(int argc, char *argv[])
{
struct ec_params_mkbp_simulate_key p;
char *e;
int rv;
if (argc != 4) {
fprintf(stderr,
"Usage: %s <row> <col> <0|1>\n", argv[0]);
return -1;
}
p.row = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad row.\n");
return -1;
}
p.col = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad column.\n");
return -1;
}
p.pressed = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad pressed flag.\n");
return -1;
}
printf("%s row %d col %d.\n", p.pressed ? "Pressing" : "Releasing",
p.row,
p.col);
rv = ec_command(EC_CMD_MKBP_SIMULATE_KEY, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Done.\n");
return 0;
}
static void print_panic_reg(int regnum, const uint32_t *regs, int index)
{
static const char * const regname[] = {
"r0 ", "r1 ", "r2 ", "r3 ", "r4 ",
"r5 ", "r6 ", "r7 ", "r8 ", "r9 ",
"r10", "r11", "r12", "sp ", "lr ",
"pc "};
printf("%s:", regname[regnum]);
if (regs)
printf("%08x", regs[index]);
else
printf(" ");
printf((regnum & 3) == 3 ? "\n" : " ");
}
int cmd_panic_info(int argc, char *argv[])
{
int rv;
struct panic_data *pdata = (struct panic_data *)ec_inbuf;
const uint32_t *lregs = pdata->cm.regs;
const uint32_t *sregs = NULL;
enum {
ORIG_UNKNOWN = 0,
ORIG_PROCESS,
ORIG_HANDLER
} origin = ORIG_UNKNOWN;
int i;
const char *panic_origins[3] = {"", "PROCESS", "HANDLER"};
rv = ec_command(EC_CMD_GET_PANIC_INFO, 0, NULL, 0,
ec_inbuf, ec_max_insize);
if (rv < 0)
return rv;
if (rv == 0) {
printf("No panic data.\n");
return 0;
}
/*
* We only understand panic data with version <= 2. Warn the user
* of higher versions.
*/
if (pdata->struct_version > 2)
fprintf(stderr,
"Unknown panic data version (%d). "
"Following data may be incorrect!\n",
pdata->struct_version);
if (pdata->arch != PANIC_ARCH_CORTEX_M)
fprintf(stderr, "Unknown architecture (%d). "
"CPU specific data will be incorrect!\n",
pdata->arch);
printf("Saved panic data:%s\n",
(pdata->flags & PANIC_DATA_FLAG_OLD_HOSTCMD ? "" : " (NEW)"));
if (pdata->struct_version == 2)
origin = ((lregs[11] & 0xf) == 1 || (lregs[11] & 0xf) == 9) ?
ORIG_HANDLER : ORIG_PROCESS;
/*
* In pdata struct, 'regs', which is allocated before 'frame', has
* one less elements in version 1. Therefore, if the data is from
* version 1, shift 'sregs' by one element to align with 'frame' in
* version 1.
*/
if (pdata->flags & PANIC_DATA_FLAG_FRAME_VALID)
sregs = pdata->cm.frame - (pdata->struct_version == 1 ? 1 : 0);
printf("=== %s EXCEPTION: %02x ====== xPSR: %08x ===\n",
panic_origins[origin],
lregs[1] & 0xff, sregs ? sregs[7] : -1);
for (i = 0; i < 4; ++i)
print_panic_reg(i, sregs, i);
for (i = 4; i < 10; ++i)
print_panic_reg(i, lregs, i - 1);
print_panic_reg(10, lregs, 9);
print_panic_reg(11, lregs, 10);
print_panic_reg(12, sregs, 4);
print_panic_reg(13, lregs, origin == ORIG_HANDLER ? 2 : 0);
print_panic_reg(14, sregs, 5);
print_panic_reg(15, sregs, 6);
return 0;
}
int cmd_power_info(int argc, char *argv[])
{
struct ec_response_power_info r;
int rv;
rv = ec_command(EC_CMD_POWER_INFO, 0, NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
printf("AC Voltage: %d mV\n", r.voltage_ac);
printf("System Voltage: %d mV\n", r.voltage_system);
printf("System Current: %d mA\n", r.current_system);
printf("System Power: %d mW\n",
r.voltage_system * r.current_system / 1000);
printf("USB Device Type: 0x%x\n", r.usb_dev_type);
printf("USB Current Limit: %d mA\n", r.usb_current_limit);
return 0;
}
int cmd_pstore_info(int argc, char *argv[])
{
struct ec_response_pstore_info r;
int rv;
rv = ec_command(EC_CMD_PSTORE_INFO, 0, NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
printf("PstoreSize %d\nAccessSize %d\n", r.pstore_size, r.access_size);
return 0;
}
int cmd_pstore_read(int argc, char *argv[])
{
struct ec_params_pstore_read p;
uint8_t rdata[EC_PSTORE_SIZE_MAX];
int offset, size;
int rv;
int i;
char *e;
char *buf;
if (argc < 4) {
fprintf(stderr,
"Usage: %s <offset> <size> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x10000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
size = strtol(argv[2], &e, 0);
if ((e && *e) || size <= 0 || size > 0x10000) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Reading %d bytes at offset %d...\n", size, offset);
buf = (char *)malloc(size);
if (!buf) {
fprintf(stderr, "Unable to allocate buffer.\n");
return -1;
}
/* Read data in chunks */
for (i = 0; i < size; i += EC_PSTORE_SIZE_MAX) {
p.offset = offset + i;
p.size = MIN(size - i, EC_PSTORE_SIZE_MAX);
rv = ec_command(EC_CMD_PSTORE_READ, 0,
&p, sizeof(p), rdata, sizeof(rdata));
if (rv < 0) {
fprintf(stderr, "Read error at offset %d\n", i);
free(buf);
return rv;
}
memcpy(buf + i, rdata, p.size);
}
rv = write_file(argv[3], buf, size);
free(buf);
if (rv)
return rv;
printf("done.\n");
return 0;
}
int cmd_pstore_write(int argc, char *argv[])
{
struct ec_params_pstore_write p;
int offset, size;
int rv;
int i;
char *e;
char *buf;
if (argc < 3) {
fprintf(stderr, "Usage: %s <offset> <filename>\n", argv[0]);
return -1;
}
offset = strtol(argv[1], &e, 0);
if ((e && *e) || offset < 0 || offset > 0x10000) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
/* Read the input file */
buf = read_file(argv[2], &size);
if (!buf)
return -1;
printf("Writing to offset %d...\n", offset);
/* Write data in chunks */
for (i = 0; i < size; i += EC_PSTORE_SIZE_MAX) {
p.offset = offset + i;
p.size = MIN(size - i, EC_PSTORE_SIZE_MAX);
memcpy(p.data, buf + i, p.size);
rv = ec_command(EC_CMD_PSTORE_WRITE, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0) {
fprintf(stderr, "Write error at offset %d\n", i);
free(buf);
return rv;
}
}
free(buf);
printf("done.\n");
return 0;
}
int cmd_host_event_get_raw(int argc, char *argv[])
{
uint32_t events = read_mapped_mem32(EC_MEMMAP_HOST_EVENTS);
if (events & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) {
printf("Current host events: invalid\n");
return -1;
}
printf("Current host events: 0x%08x\n", events);
return 0;
}
int cmd_host_event_get_b(int argc, char *argv[])
{
struct ec_response_host_event_mask r;
int rv;
rv = ec_command(EC_CMD_HOST_EVENT_GET_B, 0,
NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
if (rv < sizeof(r)) {
fprintf(stderr, "Insufficient data received.\n");
return -1;
}
if (r.mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) {
printf("Current host events-B: invalid\n");
return -1;
}
printf("Current host events-B: 0x%08x\n", r.mask);
return 0;
}
int cmd_host_event_get_smi_mask(int argc, char *argv[])
{
struct ec_response_host_event_mask r;
int rv;
rv = ec_command(EC_CMD_HOST_EVENT_GET_SMI_MASK, 0,
NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
printf("Current host event SMI mask: 0x%08x\n", r.mask);
return 0;
}
int cmd_host_event_get_sci_mask(int argc, char *argv[])
{
struct ec_response_host_event_mask r;
int rv;
rv = ec_command(EC_CMD_HOST_EVENT_GET_SCI_MASK, 0,
NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
printf("Current host event SCI mask: 0x%08x\n", r.mask);
return 0;
}
int cmd_host_event_get_wake_mask(int argc, char *argv[])
{
struct ec_response_host_event_mask r;
int rv;
rv = ec_command(EC_CMD_HOST_EVENT_GET_WAKE_MASK, 0,
NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
printf("Current host event wake mask: 0x%08x\n", r.mask);
return 0;
}
int cmd_host_event_set_smi_mask(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_SET_SMI_MASK, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Mask set.\n");
return 0;
}
int cmd_host_event_set_sci_mask(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_SET_SCI_MASK, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Mask set.\n");
return 0;
}
int cmd_host_event_set_wake_mask(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_SET_WAKE_MASK, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Mask set.\n");
return 0;
}
int cmd_host_event_clear(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_CLEAR, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Host events cleared.\n");
return 0;
}
int cmd_host_event_clear_b(int argc, char *argv[])
{
struct ec_params_host_event_mask p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <mask>\n", argv[0]);
return -1;
}
p.mask = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
rv = ec_command(EC_CMD_HOST_EVENT_CLEAR_B, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Host events-B cleared.\n");
return 0;
}
int cmd_switches(int argc, char *argv[])
{
uint8_t s = read_mapped_mem8(EC_MEMMAP_SWITCHES);
printf("Current switches: 0x%02x\n", s);
printf("Lid switch: %s\n",
(s & EC_SWITCH_LID_OPEN ? "OPEN" : "CLOSED"));
printf("Power button: %s\n",
(s & EC_SWITCH_POWER_BUTTON_PRESSED ? "DOWN" : "UP"));
printf("Write protect: %sABLED\n",
(s & EC_SWITCH_WRITE_PROTECT_DISABLED ? "DIS" : "EN"));
printf("Dedicated recovery: %sABLED\n",
(s & EC_SWITCH_DEDICATED_RECOVERY ? "EN" : "DIS"));
return 0;
}
int cmd_wireless(int argc, char *argv[])
{
char *e;
int rv;
int now_flags;
if (argc < 2) {
fprintf(stderr,
"Usage: %s <flags> [<mask> [<susflags> <susmask>]]\n",
argv[0]);
fprintf(stderr, " 0x1 = WLAN radio\n"
" 0x2 = Bluetooth radio\n"
" 0x4 = WWAN power\n"
" 0x8 = WLAN power\n");
return -1;
}
now_flags = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad flags.\n");
return -1;
}
if (argc < 3) {
/* Old-style - current flags only */
struct ec_params_switch_enable_wireless_v0 p;
p.enabled = now_flags;
rv = ec_command(EC_CMD_SWITCH_ENABLE_WIRELESS, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Success.\n");
} else {
/* New-style - masks and suspend flags */
struct ec_params_switch_enable_wireless_v1 p;
struct ec_response_switch_enable_wireless_v1 r;
memset(&p, 0, sizeof(p));
p.now_flags = now_flags;
p.now_mask = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad mask.\n");
return -1;
}
if (argc > 4) {
p.suspend_flags = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad suspend flags.\n");
return -1;
}
p.suspend_mask = strtol(argv[4], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad suspend mask.\n");
return -1;
}
}
rv = ec_command(EC_CMD_SWITCH_ENABLE_WIRELESS,
EC_VER_SWITCH_ENABLE_WIRELESS,
&p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
printf("Now=0x%x, suspend=0x%x\n",
r.now_flags, r.suspend_flags);
}
return 0;
}
int cmd_i2c_read(int argc, char *argv[])
{
struct ec_params_i2c_read p;
struct ec_response_i2c_read r;
char *e;
int rv;
if (argc != 5) {
fprintf(stderr, "Usage: %s <8 | 16> <port> <addr> <offset>\n",
argv[0]);
return -1;
}
p.read_size = strtol(argv[1], &e, 0);
if ((e && *e) || (p.read_size != 8 && p.read_size != 16)) {
fprintf(stderr, "Bad read size.\n");
return -1;
}
p.port = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad port.\n");
return -1;
}
p.addr = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad address.\n");
return -1;
}
p.offset = strtol(argv[4], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
/*
* TODO(crosbug.com/p/23570): use I2C_XFER command if supported, then
* fall back to I2C_READ.
*/
rv = ec_command(EC_CMD_I2C_READ, 0, &p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
printf("Read from I2C port %d at 0x%x offset 0x%x = 0x%x\n",
p.port, p.addr, p.offset, r.data);
return 0;
}
int cmd_i2c_write(int argc, char *argv[])
{
struct ec_params_i2c_write p;
char *e;
int rv;
if (argc != 6) {
fprintf(stderr,
"Usage: %s <8 | 16> <port> <addr> <offset> <data>\n",
argv[0]);
return -1;
}
p.write_size = strtol(argv[1], &e, 0);
if ((e && *e) || (p.write_size != 8 && p.write_size != 16)) {
fprintf(stderr, "Bad write size.\n");
return -1;
}
p.port = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad port.\n");
return -1;
}
p.addr = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad address.\n");
return -1;
}
p.offset = strtol(argv[4], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
p.data = strtol(argv[5], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad data.\n");
return -1;
}
/*
* TODO(crosbug.com/p/23570): use I2C_XFER command if supported, then
* fall back to I2C_WRITE.
*/
rv = ec_command(EC_CMD_I2C_WRITE, 0, &p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Wrote 0x%x to I2C port %d at 0x%x offset 0x%x.\n",
p.data, p.port, p.addr, p.offset);
return 0;
}
int cmd_i2c_xfer(int argc, char *argv[])
{
struct ec_params_i2c_passthru *p =
(struct ec_params_i2c_passthru *)ec_outbuf;
struct ec_response_i2c_passthru *r =
(struct ec_response_i2c_passthru *)ec_inbuf;
struct ec_params_i2c_passthru_msg *msg = p->msg;
unsigned int addr;
uint8_t *pdata;
char *e;
int read_len, write_len;
int size;
int rv, i;
if (argc < 4) {
fprintf(stderr,
"Usage: %s <port> <slave_addr> <read_count> "
"[write bytes...]\n", argv[0]);
return -1;
}
p->port = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad port.\n");
return -1;
}
addr = strtol(argv[2], &e, 0) & 0x7f;
if (e && *e) {
fprintf(stderr, "Bad slave address.\n");
return -1;
}
read_len = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad read length.\n");
return -1;
}
/* Skip over params to bytes to write */
argc -= 4;
argv += 4;
write_len = argc;
p->num_msgs = (read_len != 0) + (write_len != 0);
size = sizeof(*p) + p->num_msgs * sizeof(*msg);
if (size + write_len > ec_max_outsize) {
fprintf(stderr, "Params too large for buffer\n");
return -1;
}
if (sizeof(*r) + read_len > ec_max_insize) {
fprintf(stderr, "Read length too big for buffer\n");
return -1;
}
pdata = (uint8_t *)p + size;
if (write_len) {
msg->addr_flags = addr;
msg->len = write_len;
for (i = 0; i < write_len; i++) {
pdata[i] = strtol(argv[i], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad write byte %d\n", i);
return -1;
}
}
msg++;
}
if (read_len) {
msg->addr_flags = addr | EC_I2C_FLAG_READ;
msg->len = read_len;
}
rv = ec_command(EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
r, sizeof(*r) + read_len);
if (rv < 0)
return rv;
/* Parse response */
if (r->i2c_status & (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)) {
fprintf(stderr, "Transfer failed with status=0x%x\n",
r->i2c_status);
return -1;
}
if (rv < sizeof(*r) + read_len) {
fprintf(stderr, "Truncated read response\n");
return -1;
}
if (read_len) {
printf("Read bytes:");
for (i = 0; i < read_len; i++)
printf(" %#02x", r->data[i]);
printf("\n");
} else {
printf("Write successful.\n");
}
return 0;
}
int cmd_lcd_backlight(int argc, char *argv[])
{
struct ec_params_switch_enable_backlight p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <0|1>\n", argv[0]);
return -1;
}
p.enabled = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad value.\n");
return -1;
}
rv = ec_command(EC_CMD_SWITCH_ENABLE_BKLIGHT, 0,
&p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Success.\n");
return 0;
}
int cmd_ext_power_current_limit(int argc, char *argv[])
{
struct ec_params_ext_power_current_limit p;
int rv;
char *e;
if (argc != 2) {
fprintf(stderr, "Usage: %s <max_current_mA>\n", argv[0]);
return -1;
}
p.limit = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad value.\n");
return -1;
}
rv = ec_command(EC_CMD_EXT_POWER_CURRENT_LIMIT, 0, &p, sizeof(p),
NULL, 0);
return rv;
}
int cmd_charge_current_limit(int argc, char *argv[])
{
struct ec_params_current_limit p;
int rv;
char *e;
if (argc != 2) {
fprintf(stderr, "Usage: %s <max_current_mA>\n", argv[0]);
return -1;
}
p.limit = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad value.\n");
return -1;
}
rv = ec_command(EC_CMD_CHARGE_CURRENT_LIMIT, 0, &p, sizeof(p),
NULL, 0);
return rv;
}
int cmd_charge_control(int argc, char *argv[])
{
struct ec_params_charge_control p;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <normal | idle | discharge>\n",
argv[0]);
return -1;
}
if (!strcasecmp(argv[1], "normal")) {
p.mode = CHARGE_CONTROL_NORMAL;
} else if (!strcasecmp(argv[1], "idle")) {
p.mode = CHARGE_CONTROL_IDLE;
} else if (!strcasecmp(argv[1], "discharge")) {
p.mode = CHARGE_CONTROL_DISCHARGE;
} else {
fprintf(stderr, "Bad value.\n");
return -1;
}
rv = ec_command(EC_CMD_CHARGE_CONTROL, 1, &p, sizeof(p), NULL, 0);
if (rv < 0) {
fprintf(stderr, "Is AC connected?\n");
return rv;
}
switch (p.mode) {
case CHARGE_CONTROL_NORMAL:
printf("Charge state machine normal mode.\n");
break;
case CHARGE_CONTROL_IDLE:
printf("Charge state machine force idle.\n");
break;
case CHARGE_CONTROL_DISCHARGE:
printf("Charge state machine force discharge.\n");
break;
default:
break;
}
return 0;
}
/* Table of subcommand sizes for EC_CMD_CHARGE_STATE */
#define CB_SIZES(SUBCMD) { \
sizeof(((struct ec_params_charge_state *)0)->SUBCMD) \
+ sizeof(((struct ec_params_charge_state *)0)->cmd), \
sizeof(((struct ec_response_charge_state *)0)->SUBCMD) }
static const struct {
uint8_t to_ec_size;
uint8_t from_ec_size;
} cs_paramcount[] = {
/* Order must match enum charge_state_command */
CB_SIZES(get_state),
CB_SIZES(get_param),
CB_SIZES(set_param),
};
#undef CB_SIZES
BUILD_ASSERT(ARRAY_SIZE(cs_paramcount) == CHARGE_STATE_NUM_CMDS);
static int cs_do_cmd(struct ec_params_charge_state *to_ec,
struct ec_response_charge_state *from_ec)
{
int rv;
int cmd = to_ec->cmd;
rv = ec_command(EC_CMD_CHARGE_STATE, 0,
to_ec, cs_paramcount[cmd].to_ec_size,
from_ec, cs_paramcount[cmd].from_ec_size);
return (rv < 0 ? 1 : 0);
}
static const char * const base_params[] = {
"chg_voltage",
"chg_current",
"chg_input_current",
"chg_status",
"chg_option",
};
BUILD_ASSERT(ARRAY_SIZE(base_params) == CS_NUM_BASE_PARAMS);
static int cmd_charge_state(int argc, char **argv)
{
struct ec_params_charge_state param;
struct ec_response_charge_state resp;
uint32_t p, v;
int i, r;
char *e;
if (argc > 1 && !strcasecmp(argv[1], "show")) {
param.cmd = CHARGE_STATE_CMD_GET_STATE;
r = cs_do_cmd(&param, &resp);
if (r)
return r;
printf("ac = %d\n", resp.get_state.ac);
printf("chg_voltage = %dmV\n", resp.get_state.chg_voltage);
printf("chg_current = %dmA\n", resp.get_state.chg_current);
printf("chg_input_current = %dmA\n",
resp.get_state.chg_input_current);
printf("batt_state_of_charge = %d%%\n",
resp.get_state.batt_state_of_charge);
return 0;
}
if (argc > 1 && !strcasecmp(argv[1], "param")) {
switch (argc) {
case 3:
if (!strcasecmp(argv[2], "help"))
break;
param.cmd = CHARGE_STATE_CMD_GET_PARAM;
p = strtoul(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad param: %s\n", argv[2]);
return -1;
}
param.get_param.param = p;
r = cs_do_cmd(&param, &resp);
if (r)
return r;
v = resp.get_param.value;
if (p < CS_NUM_BASE_PARAMS)
printf("%d (0x%x) # %s\n", v, v,
base_params[p]);
else
printf("%d (0x%x)\n", v, v);
return 0;
case 4:
param.cmd = CHARGE_STATE_CMD_SET_PARAM;
p = strtoul(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad param: %s\n", argv[2]);
return -1;
}
v = strtoul(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad value: %s\n", argv[3]);
return -1;
}
param.set_param.param = p;
param.set_param.value = v;
return cs_do_cmd(&param, &resp);
}
printf("base params:\n");
for (i = 0; i < CS_NUM_BASE_PARAMS; i++)
printf(" %d %s\n", i, base_params[i]);
printf("custom profile params:\n");
printf(" 0x%x - 0x%x\n", CS_PARAM_CUSTOM_PROFILE_MIN,
CS_PARAM_CUSTOM_PROFILE_MAX);
return 0;
}
printf("Usage:\n");
printf(" %s show - show current state\n", argv[0]);
printf(" %s param NUM [VALUE] - get/set param NUM\n", argv[0]);
printf(" %s param help - show known param NUMs\n", argv[0]);
return 0;
}
int cmd_gpio_get(int argc, char *argv[])
{
struct ec_params_gpio_get_v1 p_v1;
struct ec_response_gpio_get_v1 r_v1;
int i, rv, subcmd, num_gpios;
int cmdver = 1;
if (!ec_cmd_version_supported(EC_CMD_GPIO_GET, cmdver)) {
struct ec_params_gpio_get p;
struct ec_response_gpio_get r;
/* Fall back to version 0 command */
cmdver = 0;
if (argc != 2) {
fprintf(stderr, "Usage: %s <GPIO name>\n", argv[0]);
return -1;
}
if (strlen(argv[1]) + 1 > sizeof(p.name)) {
fprintf(stderr, "GPIO name too long.\n");
return -1;
}
strcpy(p.name, argv[1]);
rv = ec_command(EC_CMD_GPIO_GET, cmdver, &p,
sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
printf("GPIO %s = %d\n", p.name, r.val);
return 0;
}
if (argc > 2 || (argc == 2 && !strcmp(argv[1], "help"))) {
printf("Usage: %s [<subcmd> <GPIO name>]\n", argv[0]);
printf("'gpioget <GPIO_NAME>' - Get value by name\n");
printf("'gpioget count' - Get count of GPIOS\n");
printf("'gpioget all' - Get info for all GPIOs\n");
return -1;
}
/* Keeping it consistent with console command behavior */
if (argc == 1)
subcmd = EC_GPIO_GET_INFO;
else if (!strcmp(argv[1], "count"))
subcmd = EC_GPIO_GET_COUNT;
else if (!strcmp(argv[1], "all"))
subcmd = EC_GPIO_GET_INFO;
else
subcmd = EC_GPIO_GET_BY_NAME;
if (subcmd == EC_GPIO_GET_BY_NAME) {
p_v1.subcmd = EC_GPIO_GET_BY_NAME;
if (strlen(argv[1]) + 1 > sizeof(p_v1.get_value_by_name.name)) {
fprintf(stderr, "GPIO name too long.\n");
return -1;
}
strcpy(p_v1.get_value_by_name.name, argv[1]);
rv = ec_command(EC_CMD_GPIO_GET, cmdver, &p_v1,
sizeof(p_v1), &r_v1, sizeof(r_v1));
if (rv < 0)
return rv;
printf("GPIO %s = %d\n", p_v1.get_value_by_name.name,
r_v1.get_value_by_name.val);
return 0;
}
/* Need GPIO count for EC_GPIO_GET_COUNT or EC_GPIO_GET_INFO */
p_v1.subcmd = EC_GPIO_GET_COUNT;
rv = ec_command(EC_CMD_GPIO_GET, cmdver, &p_v1,
sizeof(p_v1), &r_v1, sizeof(r_v1));
if (rv < 0)
return rv;
if (subcmd == EC_GPIO_GET_COUNT) {
printf("GPIO COUNT = %d\n", r_v1.get_count.val);
return 0;
}
/* subcmd EC_GPIO_GET_INFO */
num_gpios = r_v1.get_count.val;
p_v1.subcmd = EC_GPIO_GET_INFO;
for (i = 0; i < num_gpios; i++) {
p_v1.get_info.index = i;
rv = ec_command(EC_CMD_GPIO_GET, cmdver, &p_v1,
sizeof(p_v1), &r_v1, sizeof(r_v1));
if (rv < 0)
return rv;
printf("%2d %-32s 0x%04X\n", r_v1.get_info.val,
r_v1.get_info.name, r_v1.get_info.flags);
}
return 0;
}
int cmd_gpio_set(int argc, char *argv[])
{
struct ec_params_gpio_set p;
char *e;
int rv;
if (argc != 3) {
fprintf(stderr, "Usage: %s <GPIO name> <0 | 1>\n", argv[0]);
return -1;
}
if (strlen(argv[1]) + 1 > sizeof(p.name)) {
fprintf(stderr, "GPIO name too long.\n");
return -1;
}
strcpy(p.name, argv[1]);
p.val = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad value.\n");
return -1;
}
rv = ec_command(EC_CMD_GPIO_SET, 0, &p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("GPIO %s set to %d\n", p.name, p.val);
return 0;
}
int cmd_battery(int argc, char *argv[])
{
char batt_text[EC_MEMMAP_TEXT_MAX];
int rv, val;
val = read_mapped_mem8(EC_MEMMAP_BATTERY_VERSION);
if (val < 1) {
fprintf(stderr, "Battery version %d is not supported\n", val);
return -1;
}
printf("Battery info:\n");
rv = read_mapped_string(EC_MEMMAP_BATT_MFGR, batt_text,
sizeof(batt_text));
if (rv < 0 || !is_string_printable(batt_text))
goto cmd_error;
printf(" OEM name: %s\n", batt_text);
rv = read_mapped_string(EC_MEMMAP_BATT_MODEL, batt_text,
sizeof(batt_text));
if (rv < 0 || !is_string_printable(batt_text))
goto cmd_error;
printf(" Model number: %s\n", batt_text);
rv = read_mapped_string(EC_MEMMAP_BATT_TYPE, batt_text,
sizeof(batt_text));
if (rv < 0 || !is_string_printable(batt_text))
goto cmd_error;
printf(" Chemistry : %s\n", batt_text);
rv = read_mapped_string(EC_MEMMAP_BATT_SERIAL, batt_text,
sizeof(batt_text));
printf(" Serial number: %s\n", batt_text);
val = read_mapped_mem32(EC_MEMMAP_BATT_DCAP);
if (!is_battery_range(val))
goto cmd_error;
printf(" Design capacity: %u mAh\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_LFCC);
if (!is_battery_range(val))
goto cmd_error;
printf(" Last full charge: %u mAh\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_DVLT);
if (!is_battery_range(val))
goto cmd_error;
printf(" Design output voltage %u mV\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_CCNT);
if (!is_battery_range(val))
goto cmd_error;
printf(" Cycle count %u\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_VOLT);
if (!is_battery_range(val))
goto cmd_error;
printf(" Present voltage %u mV\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_RATE);
if (!is_battery_range(val))
goto cmd_error;
printf(" Present current %u mA\n", val);
val = read_mapped_mem32(EC_MEMMAP_BATT_CAP);
if (!is_battery_range(val))
goto cmd_error;
printf(" Remaining capacity %u mAh\n", val);
val = read_mapped_mem8(EC_MEMMAP_BATT_FLAG);
printf(" Flags 0x%02x", val);
if (val & EC_BATT_FLAG_AC_PRESENT)
printf(" AC_PRESENT");
if (val & EC_BATT_FLAG_BATT_PRESENT)
printf(" BATT_PRESENT");
if (val & EC_BATT_FLAG_DISCHARGING)
printf(" DISCHARGING");
if (val & EC_BATT_FLAG_CHARGING)
printf(" CHARGING");
if (val & EC_BATT_FLAG_LEVEL_CRITICAL)
printf(" LEVEL_CRITICAL");
printf("\n");
return 0;
cmd_error:
fprintf(stderr, "Bad battery info value. Check protocol version.\n");
return -1;
}
int cmd_battery_cut_off(int argc, char *argv[])
{
struct ec_params_battery_cutoff p;
int cmd_version;
int rv;
memset(&p, 0, sizeof(p));
if (ec_cmd_version_supported(EC_CMD_BATTERY_CUT_OFF, 1)) {
cmd_version = 1;
if (argc > 1) {
if (!strcasecmp(argv[1], "at-shutdown")) {
p.flags = EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN;
} else {
fprintf(stderr, "Bad parameter: %s\n", argv[1]);
return -1;
}
}
} else {
/* Fall back to version 0 command */
cmd_version = 0;
if (argc > 1) {
if (!strcasecmp(argv[1], "at-shutdown")) {
fprintf(stderr, "Explicit 'at-shutdown' ");
fprintf(stderr, "parameter not supported.\n");
} else {
fprintf(stderr, "Bad parameter: %s\n", argv[1]);
}
return -1;
}
}
rv = ec_command(EC_CMD_BATTERY_CUT_OFF, cmd_version, &p, sizeof(p),
NULL, 0);
rv = (rv < 0 ? rv : 0);
if (rv < 0) {
fprintf(stderr, "Failed to cut off battery, rv=%d\n", rv);
fprintf(stderr, "It is expected if the rv is -%d "
"(EC_RES_INVALID_COMMAND) if the battery "
"doesn't support cut-off function.\n",
EC_RES_INVALID_COMMAND);
} else {
printf("\n");
printf("SUCCESS. The battery has arranged a cut-off.\n");
if (cmd_version == 1 &&
(p.flags & EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN))
printf("The battery will be cut off after shutdown.\n");
else
printf("The system should be shutdown immediately.\n");
printf("\n");
}
return rv;
}
int cmd_battery_vendor_param(int argc, char *argv[])
{
struct ec_params_battery_vendor_param p;
struct ec_response_battery_vendor_param r;
char *e;
int rv;
if (argc < 3)
goto cmd_battery_vendor_param_usage;
if (!strcasecmp(argv[1], "get"))
p.mode = BATTERY_VENDOR_PARAM_MODE_GET;
else if (!strcasecmp(argv[1], "set"))
p.mode = BATTERY_VENDOR_PARAM_MODE_SET;
else
goto cmd_battery_vendor_param_usage;
p.param = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Invalid param.\n");
goto cmd_battery_vendor_param_usage;
}
if (p.mode == BATTERY_VENDOR_PARAM_MODE_SET) {
if (argc != 4) {
fprintf(stderr, "Missing value.\n");
goto cmd_battery_vendor_param_usage;
}
p.value = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Invalid value.\n");
goto cmd_battery_vendor_param_usage;
}
}
rv = ec_command(EC_CMD_BATTERY_VENDOR_PARAM, 0, &p, sizeof(p),
&r, sizeof(r));
if (rv < 0)
return rv;
printf("0x%08x\n", r.value);
return 0;
cmd_battery_vendor_param_usage:
fprintf(stderr,
"Usage:\t %s get <param>\n"
"\t %s set <param> <value>\n",
argv[0], argv[0]);
return -1;
}
int cmd_board_version(int argc, char *argv[])
{
struct ec_response_board_version response;
int rv;
rv = ec_command(EC_CMD_GET_BOARD_VERSION, 0, NULL, 0, &response,
sizeof(response));
if (rv < 0)
return rv;
printf("%d\n", response.board_version);
return rv;
}
int cmd_chipinfo(int argc, char *argv[])
{
struct ec_response_get_chip_info info;
int rv;
printf("Chip info:\n");
rv = ec_command(EC_CMD_GET_CHIP_INFO, 0, NULL, 0, &info, sizeof(info));
if (rv < 0)
return rv;
printf(" vendor: %s\n", info.vendor);
printf(" name: %s\n", info.name);
printf(" revision: %s\n", info.revision);
return 0;
}
int cmd_proto_info(int argc, char *argv[])
{
struct ec_response_get_protocol_info info;
int rv;
int i;
printf("Protocol info:\n");
rv = ec_command(EC_CMD_GET_PROTOCOL_INFO, 0, NULL, 0,
&info, sizeof(info));
if (rv < 0) {
fprintf(stderr, "Protocol info unavailable. EC probably only "
"supports protocol version 2.\n");
return rv;
}
printf(" protocol versions:");
for (i = 0; i < 32; i++) {
if (info.protocol_versions & (1 << i))
printf(" %d", i);
}
printf("\n");
printf(" max request: %4d bytes\n", info.max_request_packet_size);
printf(" max response: %4d bytes\n", info.max_response_packet_size);
printf(" flags: 0x%08x\n", info.flags);
if (info.flags & EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED)
printf(" EC_RES_IN_PROGRESS supported\n");
return 0;
}
static int ec_hash_help(const char *cmd)
{
printf("Usage:\n");
printf(" %s - get last hash\n", cmd);
printf(" %s abort - abort hashing\n", cmd);
printf(" %s start [<offset> <size> [<nonce>]] - start hashing\n", cmd);
printf(" %s recalc [<offset> <size> [<nonce>]] - sync rehash\n", cmd);
printf("\n"
"If <offset> is RO or RW, offset and size are computed\n"
"automatically for the EC-RO or EC-RW firmware image.\n");
return 0;
}
static int ec_hash_print(const struct ec_response_vboot_hash *r)
{
int i;
if (r->status == EC_VBOOT_HASH_STATUS_BUSY) {
printf("status: busy\n");
return 0;
} else if (r->status == EC_VBOOT_HASH_STATUS_NONE) {
printf("status: unavailable\n");
return 0;
} else if (r->status != EC_VBOOT_HASH_STATUS_DONE) {
printf("status: %d\n", r->status);
return 0;
}
printf("status: done\n");
if (r->hash_type == EC_VBOOT_HASH_TYPE_SHA256)
printf("type: SHA-256\n");
else
printf("type: %d\n", r->hash_type);
printf("offset: 0x%08x\n", r->offset);
printf("size: 0x%08x\n", r->size);
printf("hash: ");
for (i = 0; i < r->digest_size; i++)
printf("%02x", r->hash_digest[i]);
printf("\n");
return 0;
}
int cmd_ec_hash(int argc, char *argv[])
{
struct ec_params_vboot_hash p;
struct ec_response_vboot_hash r;
char *e;
int rv;
if (argc < 2) {
/* Get hash status */
p.cmd = EC_VBOOT_HASH_GET;
rv = ec_command(EC_CMD_VBOOT_HASH, 0,
&p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
return ec_hash_print(&r);
}
if (argc == 2 && !strcasecmp(argv[1], "abort")) {
/* Abort hash calculation */
p.cmd = EC_VBOOT_HASH_ABORT;
rv = ec_command(EC_CMD_VBOOT_HASH, 0,
&p, sizeof(p), &r, sizeof(r));
return (rv < 0 ? rv : 0);
}
/* The only other commands are start and recalc */
if (!strcasecmp(argv[1], "start"))
p.cmd = EC_VBOOT_HASH_START;
else if (!strcasecmp(argv[1], "recalc"))
p.cmd = EC_VBOOT_HASH_RECALC;
else
return ec_hash_help(argv[0]);
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
if (argc < 3) {
fprintf(stderr, "Must specify offset\n");
return -1;
}
if (!strcasecmp(argv[2], "ro")) {
p.offset = EC_VBOOT_HASH_OFFSET_RO;
p.size = 0;
printf("Hashing EC-RO...\n");
} else if (!strcasecmp(argv[2], "rw")) {
p.offset = EC_VBOOT_HASH_OFFSET_RW;
p.size = 0;
printf("Hashing EC-RW...\n");
} else if (argc < 4) {
fprintf(stderr, "Must specify size\n");
return -1;
} else {
p.offset = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad offset.\n");
return -1;
}
p.size = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad size.\n");
return -1;
}
printf("Hashing %d bytes at offset %d...\n", p.size, p.offset);
}
if (argc == 5) {
/*
* Technically nonce can be any binary data up to 64 bytes,
* but this command only supports a 32-bit value.
*/
uint32_t nonce = strtol(argv[4], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad nonce integer.\n");
return -1;
}
memcpy(p.nonce_data, &nonce, sizeof(nonce));
p.nonce_size = sizeof(nonce);
} else
p.nonce_size = 0;
rv = ec_command(EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
/* Start command doesn't wait for hashing to finish */
if (p.cmd == EC_VBOOT_HASH_START)
return 0;
/* Recalc command does wait around, so a result is ready now */
return ec_hash_print(&r);
}
int cmd_rtc_get(int argc, char *argv[])
{
struct ec_response_rtc r;
int rv;
rv = ec_command(EC_CMD_RTC_GET_VALUE, 0, NULL, 0, &r, sizeof(r));
if (rv < 0)
return rv;
printf("Current time: 0x%08x (%d)\n", r.time, r.time);
return 0;
}
int cmd_rtc_set(int argc, char *argv[])
{
struct ec_params_rtc p;
char *e;
int rv;
if (argc != 2) {
fprintf(stderr, "Usage: %s <time>\n", argv[0]);
return -1;
}
p.time = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad time.\n");
return -1;
}
rv = ec_command(EC_CMD_RTC_SET_VALUE, 0, &p, sizeof(p), NULL, 0);
if (rv < 0)
return rv;
printf("Time set.\n");
return 0;
}
int cmd_console(int argc, char *argv[])
{
char *out = (char *)ec_inbuf;
int rv;
/* Snapshot the EC console */
rv = ec_command(EC_CMD_CONSOLE_SNAPSHOT, 0, NULL, 0, NULL, 0);
if (rv < 0)
return rv;
/* Loop and read from the snapshot until it's done */
while (1) {
rv = ec_command(EC_CMD_CONSOLE_READ, 0,
NULL, 0, ec_inbuf, ec_max_insize);
if (rv < 0)
return rv;
/* Empty response means done */
if (!rv || !*out)
break;
/* Make sure output is null-terminated, then dump it */
out[ec_max_insize - 1] = '\0';
fputs(out, stdout);
}
printf("\n");
return 0;
}
/* Flood port 80 with byte writes */
int cmd_port_80_flood(int argc, char *argv[])
{
int i;
for (i = 0; i < 256; i++)
outb(i, 0x80);
return 0;
}
struct param_info {
const char *name; /* name of this parameter */
const char *help; /* help message */
int size; /* size in bytes */
int offset; /* offset within structure */
};
#define FIELD(fname, field, help_str) \
{ \
.name = fname, \
.help = help_str, \
.size = sizeof(((struct ec_mkbp_config *)NULL)->field), \
.offset = __builtin_offsetof(struct ec_mkbp_config, field), \
}
static const struct param_info keyconfig_params[] = {
FIELD("scan_period", scan_period_us, "period between scans"),
FIELD("poll_timeout", poll_timeout_us,
"revert to irq mode after no activity for this long"),
FIELD("min_post_scan_delay", min_post_scan_delay_us,
"minimum post-scan delay before starting a new scan"),
FIELD("output_settle", output_settle_us,
"delay to wait for output to settle"),
FIELD("debounce_down", debounce_down_us,
"time for debounce on key down"),
FIELD("debounce_up", debounce_up_us, "time for debounce on key up"),
FIELD("fifo_max_depth", fifo_max_depth,
"maximum depth to allow for fifo (0 = disable)"),
FIELD("flags", flags, "0 to disable scanning, 1 to enable"),
};
static const struct param_info *find_field(const struct param_info *params,
int count, const char *name, unsigned int *nump)
{
const struct param_info *param;
int i;
for (i = 0, param = params; i < count; i++, param++) {
if (0 == strcmp(param->name, name)) {
if (nump)
*nump = i;
return param;
}
}
fprintf(stderr, "Unknown parameter '%s'\n", name);
return NULL;
}
static int get_value(const struct param_info *param, const char *config)
{
const char *field;
field = config + param->offset;
switch (param->size) {
case 1:
return *(uint8_t *)field;
case 2:
return *(uint16_t *)field;
case 4:
return *(uint32_t *)field;
default:
fprintf(stderr, "Internal error: unknown size %d\n",
param->size);
}
return -1;
}
static int show_fields(struct ec_mkbp_config *config, int argc, char *argv[])
{
const struct param_info *param;
uint32_t mask;
int i;
if (!argc) {
mask = -1U; /* show all fields */
} else {
mask = 0;
while (argc > 0) {
unsigned int num;
param = find_field(keyconfig_params,
ARRAY_SIZE(keyconfig_params),
argv[0], &num);
if (!param)
return -1;
mask |= 1 << num;
argc--;
argv++;
}
}
param = keyconfig_params;
for (i = 0; i < ARRAY_SIZE(keyconfig_params); i++, param++) {
if (mask & (1 << i)) {
fprintf(stderr, "%-12s %u\n", param->name,
get_value(param, (char *)config));
}
}
return 0;
}
static int cmd_keyconfig(int argc, char *argv[])
{
struct ec_params_mkbp_set_config req;
int cmd;
int rv;
if (argc < 2) {
const struct param_info *param;
int i;
fprintf(stderr, "Usage: %s get [<param>] - print params\n"
"\t%s set [<param>> <value>]\n"
" Available params are: (all time values are in us)",
argv[0], argv[0]);
param = keyconfig_params;
for (i = 0; i < ARRAY_SIZE(keyconfig_params); i++, param++) {
fprintf(stderr, "%-12s %s\n", param->name,
param->name);
}
return -1;
}
/* Get the command */
if (0 == strcmp(argv[1], "get")) {
cmd = EC_CMD_MKBP_GET_CONFIG;
} else if (0 == strcmp(argv[1], "set")) {
cmd = EC_CMD_MKBP_SET_CONFIG;
} else {
fprintf(stderr, "Invalid command '%s\n", argv[1]);
return -1;
}
switch (cmd) {
case EC_CMD_MKBP_GET_CONFIG:
/* Read the existing config */
rv = ec_command(cmd, 0, NULL, 0, &req, sizeof(req));
if (rv < 0)
return rv;
show_fields(&req.config, argc - 2, argv + 2);
break;
}
return 0;
}
int cmd_tmp006cal(int argc, char *argv[])
{
struct ec_params_tmp006_set_calibration p;
char *e;
int idx;
int rv;
if (argc < 2) {
fprintf(stderr, "Must specify tmp006 index.\n");
return -1;
}
idx = strtol(argv[1], &e, 0);
if ((e && *e) || idx < 0 || idx > 255) {
fprintf(stderr, "Bad index.\n");
return -1;
}
if (argc == 2) {
struct ec_params_tmp006_get_calibration pg;
struct ec_response_tmp006_get_calibration r;
pg.index = idx;
rv = ec_command(EC_CMD_TMP006_GET_CALIBRATION, 0,
&pg, sizeof(pg), &r, sizeof(r));
if (rv < 0)
return rv;
printf("S0: %e\n", r.s0);
printf("b0: %e\n", r.b0);
printf("b1: %e\n", r.b1);
printf("b2: %e\n", r.b2);
return EC_SUCCESS;
}
if (argc != 6) {
fprintf(stderr, "Must specify all calibration params.\n");
return -1;
}
memset(&p, 0, sizeof(p));
p.index = idx;
p.s0 = strtod(argv[2], &e);
if (e && *e) {
fprintf(stderr, "Bad S0.\n");
return -1;
}
p.b0 = strtod(argv[3], &e);
if (e && *e) {
fprintf(stderr, "Bad b0.\n");
return -1;
}
p.b1 = strtod(argv[4], &e);
if (e && *e) {
fprintf(stderr, "Bad b1.\n");
return -1;
}
p.b2 = strtod(argv[5], &e);
if (e && *e) {
fprintf(stderr, "Bad b2.\n");
return -1;
}
return ec_command(EC_CMD_TMP006_SET_CALIBRATION, 0,
&p, sizeof(p), NULL, 0);
}
int cmd_tmp006raw(int argc, char *argv[])
{
struct ec_params_tmp006_get_raw p;
struct ec_response_tmp006_get_raw r;
char *e;
int idx;
int rv;
if (argc != 2) {
fprintf(stderr, "Must specify tmp006 index.\n");
return -1;
}
idx = strtol(argv[1], &e, 0);
if ((e && *e) || idx < 0 || idx > 255) {
fprintf(stderr, "Bad index.\n");
return -1;
}
p.index = idx;
rv = ec_command(EC_CMD_TMP006_GET_RAW, 0, &p, sizeof(p), &r, sizeof(r));
if (rv < 0)
return rv;
printf("T: %d.%02d K\n", r.t / 100, r.t % 100);
printf("V: %d nV\n", r.v);
return EC_SUCCESS;
}
static int cmd_hang_detect(int argc, char *argv[])
{
struct ec_params_hang_detect req;
char *e;
memset(&req, 0, sizeof(req));
if (argc == 2 && !strcasecmp(argv[1], "stop")) {
req.flags = EC_HANG_STOP_NOW;
return ec_command(EC_CMD_HANG_DETECT, 0, &req, sizeof(req),
NULL, 0);
}
if (argc == 2 && !strcasecmp(argv[1], "start")) {
req.flags = EC_HANG_START_NOW;
return ec_command(EC_CMD_HANG_DETECT, 0, &req, sizeof(req),
NULL, 0);
}
if (argc == 4) {
req.flags = strtol(argv[1], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad flags.\n");
return -1;
}
req.host_event_timeout_msec = strtol(argv[2], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad event timeout.\n");
return -1;
}
req.warm_reboot_timeout_msec = strtol(argv[3], &e, 0);
if (e && *e) {
fprintf(stderr, "Bad reboot timeout.\n");
return -1;
}
printf("hang flags=0x%x\n"
"event_timeout=%d ms\n"
"reboot_timeout=%d ms\n",
req.flags, req.host_event_timeout_msec,
req.warm_reboot_timeout_msec);
return ec_command(EC_CMD_HANG_DETECT, 0, &req, sizeof(req),
NULL, 0);
}
fprintf(stderr,
"Must specify start/stop or <flags> <event_ms> <reboot_ms>\n");
return -1;
}
enum port_80_event {
PORT_80_EVENT_RESUME = 0x1001, /* S3->S0 transition */
PORT_80_EVENT_RESET = 0x1002, /* RESET transition */
};
int cmd_port80_read(int argc, char *argv[])
{
struct ec_params_port80_read p;
int cmdver = 1, rv;
int i, head, tail;
uint16_t *history;
uint32_t writes, history_size;
struct ec_response_port80_read rsp;
int printed = 0;
if (!ec_cmd_version_supported(EC_CMD_PORT80_READ, cmdver)) {
/* fall back to last boot */
struct ec_response_port80_last_boot r;
rv = ec_command(EC_CMD_PORT80_LAST_BOOT, 0,
NULL, 0, &r, sizeof(r));
fprintf(stderr, "Last boot %2x\n", r.code);
printf("done.\n");
return 0;
}
/* read writes and history_size */
p.subcmd = EC_PORT80_GET_INFO;
rv = ec_command(EC_CMD_PORT80_READ, cmdver,
&p, sizeof(p), &rsp, sizeof(rsp));
if (rv < 0) {
fprintf(stderr, "Read error at writes\n");
return rv;
}
writes = rsp.get_info.writes;
history_size = rsp.get_info.history_size;
history = malloc(history_size*sizeof(uint16_t));
if (!history) {
fprintf(stderr, "Unable to allocate buffer.\n");
return -1;
}
/* As the history buffer is quite large, we read data in chunks, with
size in bytes of EC_PORT80_SIZE_MAX in each chunk.
Incrementing offset until all history buffer has been read. To
simplify the design, chose HISTORY_LEN is always multiple of
EC_PORT80_SIZE_MAX.
offset: entry offset from the beginning of history buffer.
num_entries: number of entries requested.
*/
p.subcmd = EC_PORT80_READ_BUFFER;
for (i = 0; i < history_size; i += EC_PORT80_SIZE_MAX) {
p.read_buffer.offset = i;
p.read_buffer.num_entries = EC_PORT80_SIZE_MAX;
rv = ec_command(EC_CMD_PORT80_READ, cmdver,
&p, sizeof(p), &rsp, sizeof(rsp));
if (rv < 0) {
fprintf(stderr, "Read error at offset %d\n", i);
free(history);
return rv;
}
memcpy((void *)(history + i), rsp.data.codes,
EC_PORT80_SIZE_MAX*sizeof(uint16_t));
}
head = writes;
if (head > history_size)
tail = head - history_size;
else
tail = 0;
fprintf(stderr, "Port 80 writes");
for (i = tail; i < head; i++) {
int e = history[i % history_size];
switch (e) {
case PORT_80_EVENT_RESUME:
fprintf(stderr, "\n(S3->S0)");
printed = 0;
break;
case PORT_80_EVENT_RESET:
fprintf(stderr, "\n(RESET)");
printed = 0;
break;
default:
if (!(printed++ % 20))
fprintf(stderr, "\n ");
fprintf(stderr, " %02x", e);
}
}
fprintf(stderr, " <--new\n");
free(history);
printf("done.\n");
return 0;
}
struct command {
const char *name;
int (*handler)(int argc, char *argv[]);
};
/* NULL-terminated list of commands */
const struct command commands[] = {
{"extpwrcurrentlimit", cmd_ext_power_current_limit},
{"autofanctrl", cmd_thermal_auto_fan_ctrl},
{"backlight", cmd_lcd_backlight},
{"battery", cmd_battery},
{"batterycutoff", cmd_battery_cut_off},
{"batteryparam", cmd_battery_vendor_param},
{"boardversion", cmd_board_version},
{"chargecurrentlimit", cmd_charge_current_limit},
{"chargecontrol", cmd_charge_control},
{"chargestate", cmd_charge_state},
{"chipinfo", cmd_chipinfo},
{"cmdversions", cmd_cmdversions},
{"console", cmd_console},
{"echash", cmd_ec_hash},
{"eventclear", cmd_host_event_clear},
{"eventclearb", cmd_host_event_clear_b},
{"eventget", cmd_host_event_get_raw},
{"eventgetb", cmd_host_event_get_b},
{"eventgetscimask", cmd_host_event_get_sci_mask},
{"eventgetsmimask", cmd_host_event_get_smi_mask},
{"eventgetwakemask", cmd_host_event_get_wake_mask},
{"eventsetscimask", cmd_host_event_set_sci_mask},
{"eventsetsmimask", cmd_host_event_set_smi_mask},
{"eventsetwakemask", cmd_host_event_set_wake_mask},
{"fanduty", cmd_fanduty},
{"flasherase", cmd_flash_erase},
{"flashprotect", cmd_flash_protect},
{"flashread", cmd_flash_read},
{"flashwrite", cmd_flash_write},
{"flashinfo", cmd_flash_info},
{"flashpd", cmd_flash_pd},
{"gpioget", cmd_gpio_get},
{"gpioset", cmd_gpio_set},
{"hangdetect", cmd_hang_detect},
{"hello", cmd_hello},
{"kbpress", cmd_kbpress},
{"i2cread", cmd_i2c_read},
{"i2cwrite", cmd_i2c_write},
{"i2cxfer", cmd_i2c_xfer},
{"infopddev", cmd_pd_device_info},
{"led", cmd_led},
{"lightbar", cmd_lightbar},
{"keyconfig", cmd_keyconfig},
{"keyscan", cmd_keyscan},
{"motionsense", cmd_motionsense},
{"panicinfo", cmd_panic_info},
{"pause_in_s5", cmd_s5},
{"port80read", cmd_port80_read},
{"powerinfo", cmd_power_info},
{"protoinfo", cmd_proto_info},
{"pstoreinfo", cmd_pstore_info},
{"pstoreread", cmd_pstore_read},
{"pstorewrite", cmd_pstore_write},
{"pwmgetfanrpm", cmd_pwm_get_fan_rpm},
{"pwmgetkblight", cmd_pwm_get_keyboard_backlight},
{"pwmsetfanrpm", cmd_pwm_set_fan_rpm},
{"pwmsetkblight", cmd_pwm_set_keyboard_backlight},
{"readtest", cmd_read_test},
{"reboot_ec", cmd_reboot_ec},
{"rtcget", cmd_rtc_get},
{"rtcset", cmd_rtc_set},
{"rwhashpd", cmd_rw_hash_pd},
{"sertest", cmd_serial_test},
{"port80flood", cmd_port_80_flood},
{"switches", cmd_switches},
{"temps", cmd_temperature},
{"tempsinfo", cmd_temp_sensor_info},
{"test", cmd_test},
{"thermalget", cmd_thermal_get_threshold},
{"thermalset", cmd_thermal_set_threshold},
{"tmp006cal", cmd_tmp006cal},
{"tmp006raw", cmd_tmp006raw},
{"usbchargemode", cmd_usb_charge_set_mode},
{"usbmux", cmd_usb_mux},
{"usbpd", cmd_usb_pd},
{"version", cmd_version},
{"wireless", cmd_wireless},
{NULL, NULL}
};
int main(int argc, char *argv[])
{
const struct command *cmd;
int dev = 0;
int interfaces = COMM_ALL;
char device_name[40] = "cros_ec";
int rv = 1;
int parse_error = 0;
char *e;
int i;
BUILD_ASSERT(ARRAY_SIZE(lb_command_paramcount) == LIGHTBAR_NUM_CMDS);
while ((i = getopt_long(argc, argv, "?", long_opts, NULL)) != -1) {
switch (i) {
case '?':
/* Unhandled option */
parse_error = 1;
break;
case OPT_DEV:
dev = strtoul(optarg, &e, 0);
if (!*optarg || (e && *e)) {
fprintf(stderr, "Invalid --dev\n");
parse_error = 1;
}
break;
case OPT_INTERFACE:
if (!strcasecmp(optarg, "dev")) {
interfaces = COMM_DEV;
} else if (!strcasecmp(optarg, "lpc")) {
interfaces = COMM_LPC;
} else if (!strcasecmp(optarg, "i2c")) {
interfaces = COMM_I2C;
} else {
fprintf(stderr, "Invalid --interface\n");
parse_error = 1;
}
break;
case OPT_NAME:
strncpy(device_name, optarg, 40);
break;
}
}
/* Must specify a command */
if (!parse_error && optind == argc)
parse_error = 1;
/* 'ectool help' prints help with commands */
if (!parse_error && !strcasecmp(argv[optind], "help")) {
print_help(argv[0], 1);
exit(1);
}
/* Handle sub-devices command offset */
if (dev > 0 && dev < 4) {
set_command_offset(EC_CMD_PASSTHRU_OFFSET(dev));
} else if (dev != 0) {
fprintf(stderr, "Bad device number %d\n", dev);
parse_error = 1;
}
if (parse_error) {
print_help(argv[0], 0);
exit(1);
}
if (acquire_gec_lock(GEC_LOCK_TIMEOUT_SECS) < 0) {
fprintf(stderr, "Could not acquire GEC lock.\n");
exit(1);
}
if (comm_init(interfaces, device_name)) {
fprintf(stderr, "Couldn't find EC\n");
goto out;
}
/* Handle commands */
for (cmd = commands; cmd->name; cmd++) {
if (!strcasecmp(argv[optind], cmd->name)) {
rv = cmd->handler(argc - optind, argv + optind);
goto out;
}
}
/* If we're still here, command was unknown */
fprintf(stderr, "Unknown command '%s'\n\n", argv[optind]);
print_help(argv[0], 0);
out:
release_gec_lock();
return !!rv;
}