mirror of
https://github.com/Telecominfraproject/OpenCellular.git
synced 2026-01-09 00:51:29 +00:00
When doing a migration, try to guess at a smaller minimum size for the initial filesystem so that systems with giant drives are not needlessly penalized. Start with an even smaller initial filesystem size (16M). Move debug time counters into the main .o file to avoid compiler insanity when turning debug on and off. BUG=chromium-os:22172 TEST=link build & boot, manual testing Change-Id: I47c3ffb6e4cd88c4f0ead6fa21724704c7ed1630 Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-on: https://gerrit.chromium.org/gerrit/25638 Reviewed-by: Elly Jones <ellyjones@chromium.org>
1165 lines
30 KiB
C
1165 lines
30 KiB
C
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* This tool will attempt to mount or create the encrypted stateful partition,
|
|
* and the various bind mountable subdirectories.
|
|
*
|
|
*/
|
|
#define _GNU_SOURCE
|
|
#define _FILE_OFFSET_BITS 64
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <grp.h>
|
|
#include <pwd.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/statvfs.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/mount.h>
|
|
#include <linux/fs.h>
|
|
|
|
#include <glib.h>
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
#define CHROMEOS_ENVIRONMENT
|
|
#include "tlcl.h"
|
|
#include "crossystem.h"
|
|
|
|
#include "mount-encrypted.h"
|
|
#include "mount-helpers.h"
|
|
|
|
#define STATEFUL_MNT "mnt/stateful_partition"
|
|
#define ENCRYPTED_MNT STATEFUL_MNT "/encrypted"
|
|
#define BUF_SIZE 1024
|
|
#define PROP_SIZE 64
|
|
|
|
static const gchar * const kKernelCmdline = "/proc/cmdline";
|
|
static const gchar * const kKernelCmdlineOption = " encrypted-stateful-key=";
|
|
static const gchar * const kEncryptedFSType = "ext4";
|
|
static const gchar * const kCryptDevName = "encstateful";
|
|
static const gchar * const kTpmDev = "/dev/tpm0";
|
|
static const gchar * const kNullDev = "/dev/null";
|
|
static const float kSizePercent = 0.3;
|
|
static const float kMigrationSizeMultiplier = 1.1;
|
|
static const uint32_t kLockboxIndex = 0x20000004;
|
|
static const uint32_t kLockboxSizeV1 = 0x2c;
|
|
static const uint32_t kLockboxSizeV2 = 0x45;
|
|
static const uint32_t kLockboxSaltOffset = 0x5;
|
|
static const size_t kSectorSize = 512;
|
|
static const size_t kExt4BlockSize = 4096;
|
|
static const size_t kExt4MinBytes = 16 * 1024 * 1024;
|
|
|
|
enum migration_method {
|
|
MIGRATE_TEST_ONLY,
|
|
MIGRATE_FOR_REAL,
|
|
};
|
|
|
|
enum bind_dir {
|
|
BIND_SOURCE,
|
|
BIND_DEST,
|
|
};
|
|
|
|
static struct bind_mount {
|
|
char * src; /* Location of bind source. */
|
|
char * dst; /* Destination of bind. */
|
|
char * previous; /* Migratable prior bind source. */
|
|
char * pending; /* Location for pending deletion. */
|
|
char * owner;
|
|
char * group;
|
|
mode_t mode;
|
|
int submount; /* Submount is bound already. */
|
|
} bind_mounts_default[] = {
|
|
{ ENCRYPTED_MNT "/var", "var",
|
|
STATEFUL_MNT "/var", STATEFUL_MNT "/.var",
|
|
"root", "root",
|
|
S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH, 0 },
|
|
{ ENCRYPTED_MNT "/chronos", "home/chronos",
|
|
STATEFUL_MNT "/home/chronos", STATEFUL_MNT "/home/.chronos",
|
|
"chronos", "chronos",
|
|
S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH, 1 },
|
|
{ },
|
|
};
|
|
|
|
#if DEBUG_ENABLED
|
|
struct timeval tick = { };
|
|
struct timeval tick_start = { };
|
|
#endif
|
|
|
|
static struct bind_mount *bind_mounts = NULL;
|
|
static gchar *rootdir = NULL;
|
|
static gchar *stateful_mount = NULL;
|
|
static gchar *key_path = NULL;
|
|
static gchar *block_path = NULL;
|
|
static gchar *encrypted_mount = NULL;
|
|
static gchar *dmcrypt_name = NULL;
|
|
static gchar *dmcrypt_dev = NULL;
|
|
static int has_tpm = 0;
|
|
|
|
static void tpm_init(void)
|
|
{
|
|
int tpm;
|
|
|
|
DEBUG("Opening TPM");
|
|
tpm = open(kTpmDev, O_RDWR);
|
|
if (tpm >= 0) {
|
|
has_tpm = 1;
|
|
close(tpm);
|
|
}
|
|
else {
|
|
/* TlclLibInit does not fail, it exits, so instead,
|
|
* have it open /dev/null if the TPM is not available.
|
|
*/
|
|
setenv("TPM_DEVICE_PATH", kNullDev, 1);
|
|
}
|
|
TlclLibInit();
|
|
DEBUG("TPM %s", has_tpm ? "Ready" : "not available");
|
|
}
|
|
|
|
/* Returns TPM result status code, and on TPM_SUCCESS, stores ownership
|
|
* flag to "owned".
|
|
*/
|
|
static uint32_t tpm_owned(uint8_t *owned)
|
|
{
|
|
uint32_t result;
|
|
|
|
DEBUG("Reading TPM Ownership Flag");
|
|
result = TlclGetOwnership(owned);
|
|
DEBUG("TPM Ownership Flag returned: %s", result ? "FAIL" : "ok");
|
|
|
|
return result;
|
|
}
|
|
|
|
static void tpm_close(void)
|
|
{
|
|
TlclLibClose();
|
|
}
|
|
|
|
static void sha256(char *string, uint8_t *digest)
|
|
{
|
|
SHA256((unsigned char *)string, strlen(string), digest);
|
|
}
|
|
|
|
/* Extract the desired system key from the kernel's boot command line. */
|
|
static int get_key_from_cmdline(uint8_t *digest)
|
|
{
|
|
int result = 0;
|
|
gchar *buffer;
|
|
gsize length;
|
|
char *cmdline, *option_end;
|
|
/* Option name without the leading space. */
|
|
const gchar *option = kKernelCmdlineOption + 1;
|
|
|
|
if (!g_file_get_contents(kKernelCmdline, &buffer, &length, NULL)) {
|
|
PERROR(kKernelCmdline);
|
|
return 0;
|
|
}
|
|
|
|
/* Find a string match either at start of string or following
|
|
* a space.
|
|
*/
|
|
cmdline = buffer;
|
|
if (strncmp(cmdline, option, strlen(option)) == 0 ||
|
|
(cmdline = strstr(cmdline, kKernelCmdlineOption))) {
|
|
/* The "=" exists because it is in kKernelCmdlineOption. */
|
|
cmdline = strstr(cmdline, "=");
|
|
/* strchrnul() cannot return NULL. */
|
|
option_end = strchrnul(cmdline, ' ');
|
|
*option_end = '\0';
|
|
sha256(cmdline, digest);
|
|
debug_dump_hex("system key", digest, DIGEST_LENGTH);
|
|
result = 1;
|
|
}
|
|
|
|
g_free(buffer);
|
|
return result;
|
|
}
|
|
|
|
static int get_system_property(const char *prop, char *buf, size_t length)
|
|
{
|
|
const char *rc;
|
|
|
|
DEBUG("Fetching System Property '%s'", prop);
|
|
rc = VbGetSystemPropertyString(prop, buf, length);
|
|
DEBUG("Got System Property 'mainfw_type': %s", rc ? buf : "FAIL");
|
|
|
|
return rc != NULL;
|
|
}
|
|
|
|
static int has_chromefw(void)
|
|
{
|
|
static int state = -1;
|
|
char fw[PROP_SIZE];
|
|
|
|
/* Cache the state so we don't have to perform the query again. */
|
|
if (state != -1)
|
|
return state;
|
|
|
|
if (!get_system_property("mainfw_type", fw, sizeof(fw)))
|
|
state = 0;
|
|
else
|
|
state = strcmp(fw, "nonchrome") != 0;
|
|
return state;
|
|
}
|
|
|
|
static int is_cr48(void)
|
|
{
|
|
static int state = -1;
|
|
char hwid[PROP_SIZE];
|
|
|
|
/* Cache the state so we don't have to perform the query again. */
|
|
if (state != -1)
|
|
return state;
|
|
|
|
if (!get_system_property("hwid", hwid, sizeof(hwid)))
|
|
state = 0;
|
|
else
|
|
state = strstr(hwid, "MARIO") != NULL;
|
|
return state;
|
|
}
|
|
|
|
static uint32_t
|
|
_read_nvram(uint8_t *buffer, size_t len, uint32_t index, uint32_t size)
|
|
{
|
|
uint32_t result;
|
|
|
|
if (size > len) {
|
|
ERROR("NVRAM size (0x%x > 0x%zx) is too big", size, len);
|
|
return 0;
|
|
}
|
|
|
|
DEBUG("Reading NVRAM area 0x%x (size %u)", index, size);
|
|
result = TlclRead(index, buffer, size);
|
|
DEBUG("NVRAM read returned: %s", result == TPM_SUCCESS ? "ok"
|
|
: "FAIL");
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Cases:
|
|
* - no NVRAM area at all (OOBE)
|
|
* - defined NVRAM area, but TPM not Owned
|
|
* - defined NVRAM area, but not Finalized
|
|
* - legacy NVRAM area (migration needed)
|
|
* - modern NVRAM area (\o/)
|
|
*/
|
|
static int get_nvram_key(uint8_t *digest, int *old_lockbox)
|
|
{
|
|
uint8_t owned = 0;
|
|
uint8_t value[kLockboxSizeV2], bytes_anded, bytes_ored;
|
|
uint32_t size, result, i;
|
|
uint8_t *rand_bytes;
|
|
uint32_t rand_size;
|
|
|
|
/* Reading the NVRAM takes 40ms. Instead of querying the NVRAM area
|
|
* for its size (which takes time), just read the expected size. If
|
|
* it fails, then fall back to the older size. This means cleared
|
|
* devices take 80ms (2 failed reads), legacy devices take 80ms
|
|
* (1 failed read, 1 good read), and populated devices take 40ms,
|
|
* which is the minimum possible time (instead of 40ms + time to
|
|
* query NVRAM size).
|
|
*/
|
|
*old_lockbox = 0;
|
|
size = kLockboxSizeV2;
|
|
result = _read_nvram(value, sizeof(value), kLockboxIndex, size);
|
|
if (result != TPM_SUCCESS) {
|
|
size = kLockboxSizeV1;
|
|
result = _read_nvram(value, sizeof(value), kLockboxIndex, size);
|
|
if (result != TPM_SUCCESS) {
|
|
/* No NVRAM area at all. */
|
|
INFO("No NVRAM area defined.");
|
|
return 0;
|
|
}
|
|
/* Legacy NVRAM area. */
|
|
INFO("Legacy NVRAM area found.");
|
|
*old_lockbox = 1;
|
|
} else {
|
|
INFO("NVRAM area found.");
|
|
}
|
|
|
|
debug_dump_hex("nvram", value, size);
|
|
|
|
/* Ignore defined but unowned NVRAM area. */
|
|
/* TODO(keescook): remove this check (it adds 40ms) once the
|
|
* NVRAM area is bound to owner so that it will be wiped out
|
|
* across device mode changes.
|
|
*/
|
|
result = tpm_owned(&owned);
|
|
if (result != TPM_SUCCESS) {
|
|
INFO("Could not read TPM Permanent Flags.");
|
|
return 0;
|
|
}
|
|
if (!owned) {
|
|
INFO("TPM not Owned, ignoring NVRAM area.");
|
|
return 0;
|
|
}
|
|
|
|
/* Ignore defined but unwritten NVRAM area. */
|
|
bytes_ored = 0x0;
|
|
bytes_anded = 0xff;
|
|
for (i = 0; i < size; ++i) {
|
|
bytes_ored |= value[i];
|
|
bytes_anded &= value[i];
|
|
}
|
|
if (bytes_ored == 0x0 || bytes_anded == 0xff) {
|
|
INFO("NVRAM area has been defined but not written.");
|
|
return 0;
|
|
}
|
|
|
|
/* Choose random bytes to use based on NVRAM version. */
|
|
if (*old_lockbox) {
|
|
rand_bytes = value;
|
|
rand_size = size;
|
|
} else {
|
|
rand_bytes = value + kLockboxSaltOffset;
|
|
if (kLockboxSaltOffset + DIGEST_LENGTH > size) {
|
|
INFO("Impossibly small NVRAM area size (%d).", size);
|
|
return 0;
|
|
}
|
|
rand_size = DIGEST_LENGTH;
|
|
}
|
|
if (rand_size < DIGEST_LENGTH) {
|
|
INFO("Impossibly small rand_size (%d).", rand_size);
|
|
return 0;
|
|
}
|
|
debug_dump_hex("rand_bytes", rand_bytes, rand_size);
|
|
|
|
SHA256(rand_bytes, rand_size, digest);
|
|
debug_dump_hex("system key", digest, DIGEST_LENGTH);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find the system key used for decrypting the stored encryption key.
|
|
* ChromeOS devices are required to use the NVRAM area (excepting CR-48s),
|
|
* all the rest will fallback through various places (kernel command line,
|
|
* BIOS UUID, and finally a static value) for a system key.
|
|
*/
|
|
static int find_system_key(uint8_t *digest, int *migration_allowed)
|
|
{
|
|
gchar *key;
|
|
gsize length;
|
|
|
|
/* By default, do not allow migration. */
|
|
*migration_allowed = 0;
|
|
if (has_chromefw()) {
|
|
int rc;
|
|
rc = get_nvram_key(digest, migration_allowed);
|
|
|
|
/* Since the CR-48 did not ship with a lockbox area, they
|
|
* are allowed to fall back to non-NVRAM system keys.
|
|
*/
|
|
if (rc || !is_cr48()) {
|
|
INFO("Using NVRAM as system key; %s.",
|
|
rc ? "already populated"
|
|
: "needs population");
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (get_key_from_cmdline(digest)) {
|
|
INFO("Using kernel command line argument as system key.");
|
|
return 1;
|
|
}
|
|
if (g_file_get_contents("/sys/class/dmi/id/product_uuid",
|
|
&key, &length, NULL)) {
|
|
sha256(key, digest);
|
|
debug_dump_hex("system key", digest, DIGEST_LENGTH);
|
|
g_free(key);
|
|
INFO("Using UUID as system key.");
|
|
return 1;
|
|
}
|
|
|
|
INFO("Using default insecure system key.");
|
|
sha256("default unsafe static key", digest);
|
|
debug_dump_hex("system key", digest, DIGEST_LENGTH);
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 on success, 0 on failure. */
|
|
static int get_random_bytes_tpm(unsigned char *buffer, int wanted)
|
|
{
|
|
uint32_t remaining = wanted;
|
|
|
|
/* Read random bytes from TPM, which can return short reads. */
|
|
while (remaining) {
|
|
uint32_t result, size;
|
|
|
|
result = TlclGetRandom(buffer + (wanted - remaining),
|
|
remaining, &size);
|
|
if (result != TPM_SUCCESS || size > remaining) {
|
|
ERROR("TPM GetRandom failed.");
|
|
return 0;
|
|
}
|
|
remaining -= size;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Returns 1 on success, 0 on failure. */
|
|
static int get_random_bytes(unsigned char *buffer, int wanted)
|
|
{
|
|
if (has_tpm)
|
|
return get_random_bytes_tpm(buffer, wanted);
|
|
else
|
|
return RAND_bytes(buffer, wanted);
|
|
}
|
|
|
|
static char *choose_encryption_key(void)
|
|
{
|
|
unsigned char rand_bytes[DIGEST_LENGTH];
|
|
unsigned char digest[DIGEST_LENGTH];
|
|
|
|
get_random_bytes(rand_bytes, sizeof(rand_bytes));
|
|
|
|
SHA256(rand_bytes, DIGEST_LENGTH, digest);
|
|
debug_dump_hex("encryption key", digest, DIGEST_LENGTH);
|
|
|
|
return stringify_hex(digest, DIGEST_LENGTH);
|
|
}
|
|
|
|
static int check_bind(struct bind_mount *bind, enum bind_dir dir)
|
|
{
|
|
struct passwd *user;
|
|
struct group *group;
|
|
const gchar *target;
|
|
|
|
if (dir == BIND_SOURCE)
|
|
target = bind->src;
|
|
else
|
|
target = bind->dst;
|
|
|
|
if (access(target, R_OK) && mkdir(target, bind->mode)) {
|
|
PERROR("mkdir(%s)", target);
|
|
return -1;
|
|
}
|
|
|
|
/* Destination may be on read-only filesystem, so skip tweaks. */
|
|
if (dir == BIND_DEST)
|
|
return 0;
|
|
|
|
if (!(user = getpwnam(bind->owner))) {
|
|
PERROR("getpwnam(%s)", bind->owner);
|
|
return -1;
|
|
}
|
|
if (!(group = getgrnam(bind->group))) {
|
|
PERROR("getgrnam(%s)", bind->group);
|
|
return -1;
|
|
}
|
|
|
|
/* Must do explicit chmod since mkdir()'s mode respects umask. */
|
|
if (chmod(target, bind->mode)) {
|
|
PERROR("chmod(%s)", target);
|
|
return -1;
|
|
}
|
|
if (chown(target, user->pw_uid, group->gr_gid)) {
|
|
PERROR("chown(%s)", target);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int migrate_contents(struct bind_mount *bind,
|
|
enum migration_method method)
|
|
{
|
|
const gchar *previous = NULL;
|
|
const gchar *pending = NULL;
|
|
gchar *dotdir;
|
|
|
|
/* Skip migration if the previous bind sources are missing. */
|
|
if (bind->pending && access(bind->pending, R_OK) == 0)
|
|
pending = bind->pending;
|
|
if (bind->previous && access(bind->previous, R_OK) == 0)
|
|
previous = bind->previous;
|
|
if (!pending && !previous)
|
|
return 0;
|
|
|
|
/* Pretend migration happened. */
|
|
if (method == MIGRATE_TEST_ONLY)
|
|
return 1;
|
|
|
|
check_bind(bind, BIND_SOURCE);
|
|
|
|
/* Prefer the pending-delete location when doing migration. */
|
|
if (!(dotdir = g_strdup_printf("%s/.", pending ? pending : previous))) {
|
|
PERROR("g_strdup_printf");
|
|
goto mark_for_removal;
|
|
}
|
|
|
|
INFO("Migrating bind mount contents %s to %s.", dotdir, bind->src);
|
|
const gchar *cp[] = {
|
|
"/bin/cp", "-a",
|
|
dotdir,
|
|
bind->src,
|
|
NULL
|
|
};
|
|
|
|
if (runcmd(cp, NULL) != 0) {
|
|
/* If the copy failed, it may have partially populated the
|
|
* new source, so we need to remove the new source and
|
|
* rebuild it. Regardless, the previous source must be removed
|
|
* as well.
|
|
*/
|
|
INFO("Failed to migrate %s to %s!", dotdir, bind->src);
|
|
remove_tree(bind->src);
|
|
check_bind(bind, BIND_SOURCE);
|
|
}
|
|
|
|
mark_for_removal:
|
|
g_free(dotdir);
|
|
|
|
/* The removal of the previous directory needs to happen at finalize
|
|
* time, otherwise /var state gets lost on a migration if the
|
|
* system is powered off before the encryption key is saved. Instead,
|
|
* relocate the directory so it can be removed (or re-migrated).
|
|
*/
|
|
|
|
if (previous) {
|
|
/* If both pending and previous directory exists, we must
|
|
* remove previous entirely now so it stops taking up disk
|
|
* space. The pending area will stay pending to be deleted
|
|
* later.
|
|
*/
|
|
if (pending)
|
|
remove_tree(pending);
|
|
if (rename(previous, bind->pending)) {
|
|
PERROR("rename(%s,%s)", previous, bind->pending);
|
|
}
|
|
}
|
|
|
|
/* As noted above, failures are unrecoverable, so getting here means
|
|
* "we're done" more than "it worked".
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static void finalize(uint8_t *system_key, char *encryption_key)
|
|
{
|
|
struct bind_mount *bind;
|
|
|
|
INFO("Writing keyfile %s.", key_path);
|
|
if (!keyfile_write(key_path, system_key, encryption_key)) {
|
|
ERROR("Failed to write %s -- aborting.", key_path);
|
|
return;
|
|
}
|
|
|
|
for (bind = bind_mounts; bind->src; ++ bind) {
|
|
if (!bind->pending || access(bind->pending, R_OK))
|
|
continue;
|
|
INFO("Removing %s.", bind->pending);
|
|
#if DEBUG_ENABLED
|
|
continue;
|
|
#endif
|
|
remove_tree(bind->pending);
|
|
}
|
|
}
|
|
|
|
/* This triggers the live encryption key to be written to disk, encrypted
|
|
* by the system key. It is intended to be called by Cryptohome once the
|
|
* TPM is done being set up. If the system key is passed as an argument,
|
|
* use it, otherwise attempt to query the TPM again.
|
|
*/
|
|
static int finalize_from_cmdline(char *key)
|
|
{
|
|
uint8_t system_key[DIGEST_LENGTH];
|
|
char *encryption_key;
|
|
int migrate;
|
|
|
|
/* Early sanity-check to see if the encrypted device exists,
|
|
* instead of failing at the end of this function.
|
|
*/
|
|
if (access(dmcrypt_dev, R_OK)) {
|
|
ERROR("'%s' does not exist, giving up.", dmcrypt_dev);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (key) {
|
|
if (strlen(key) != 2 * DIGEST_LENGTH) {
|
|
ERROR("Invalid key length.");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (!hexify_string(key, system_key, DIGEST_LENGTH)) {
|
|
ERROR("Failed to convert hex string to byte array");
|
|
return EXIT_FAILURE;
|
|
}
|
|
} else {
|
|
if (!find_system_key(system_key, &migrate)) {
|
|
ERROR("Could not locate system key.");
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
encryption_key = dm_get_key(dmcrypt_dev);
|
|
if (!encryption_key) {
|
|
ERROR("Could not locate encryption key for %s.", dmcrypt_dev);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
finalize(system_key, encryption_key);
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
static void spawn_resizer(const char *device, size_t blocks,
|
|
size_t blocks_max)
|
|
{
|
|
pid_t pid;
|
|
|
|
/* Skip resize before forking, if it's not going to happen. */
|
|
if (blocks >= blocks_max) {
|
|
INFO("Resizing skipped. blocks:%zu >= blocks_max:%zu",
|
|
blocks, blocks_max);
|
|
return;
|
|
}
|
|
|
|
fflush(NULL);
|
|
pid = fork();
|
|
if (pid < 0) {
|
|
PERROR("fork");
|
|
return;
|
|
}
|
|
if (pid != 0) {
|
|
INFO("Started filesystem resizing process %d.", pid);
|
|
return;
|
|
}
|
|
|
|
/* Child */
|
|
tpm_close();
|
|
INFO_INIT("Resizer spawned.");
|
|
|
|
if (daemon(0, 1)) {
|
|
PERROR("daemon");
|
|
goto out;
|
|
}
|
|
|
|
filesystem_resize(device, blocks, blocks_max);
|
|
|
|
out:
|
|
INFO_DONE("Done.");
|
|
exit(0);
|
|
}
|
|
|
|
static int setup_encrypted(void)
|
|
{
|
|
int has_system_key;
|
|
uint8_t system_key[DIGEST_LENGTH];
|
|
char *encryption_key = NULL;
|
|
int migrate_allowed = 0, migrate_needed = 0, rebuild = 0;
|
|
gchar *lodev = NULL;
|
|
size_t sectors;
|
|
struct bind_mount *bind;
|
|
int sparsefd;
|
|
struct statvfs stateful_statbuf;
|
|
size_t blocks_min, blocks_max;
|
|
|
|
/* Use the "system key" to decrypt the "encryption key" stored in
|
|
* the stateful partition.
|
|
*/
|
|
has_system_key = find_system_key(system_key, &migrate_allowed);
|
|
if (has_system_key) {
|
|
encryption_key = keyfile_read(key_path, system_key);
|
|
} else {
|
|
INFO("No usable system key found.");
|
|
}
|
|
|
|
if (encryption_key) {
|
|
/* If we found a stored encryption key, we've already
|
|
* finished a complete login and Cryptohome Finalize
|
|
* so migration is finished.
|
|
*/
|
|
migrate_allowed = 0;
|
|
} else {
|
|
INFO("Generating new encryption key.");
|
|
encryption_key = choose_encryption_key();
|
|
if (!encryption_key)
|
|
return 0;
|
|
rebuild = 1;
|
|
}
|
|
|
|
if (rebuild) {
|
|
off_t fs_bytes_max;
|
|
|
|
/* Wipe out the old files, and ignore errors. */
|
|
unlink(key_path);
|
|
unlink(block_path);
|
|
|
|
/* Calculate the desired size of the new partition. */
|
|
if (statvfs(stateful_mount, &stateful_statbuf)) {
|
|
PERROR(stateful_mount);
|
|
return 0;
|
|
}
|
|
fs_bytes_max = stateful_statbuf.f_blocks;
|
|
fs_bytes_max *= kSizePercent;
|
|
fs_bytes_max *= stateful_statbuf.f_frsize;
|
|
|
|
INFO("Creating sparse backing file with size %llu.",
|
|
(unsigned long long)fs_bytes_max);
|
|
|
|
/* Create the sparse file. */
|
|
sparsefd = sparse_create(block_path, fs_bytes_max);
|
|
if (sparsefd < 0) {
|
|
PERROR(block_path);
|
|
return 0;
|
|
}
|
|
} else {
|
|
sparsefd = open(block_path, O_RDWR | O_NOFOLLOW);
|
|
if (sparsefd < 0) {
|
|
PERROR(block_path);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Set up loopback device. */
|
|
INFO("Loopback attaching %s (named %s).", block_path, dmcrypt_name);
|
|
lodev = loop_attach(sparsefd, dmcrypt_name);
|
|
if (!lodev || strlen(lodev) == 0) {
|
|
ERROR("loop_attach failed");
|
|
goto failed;
|
|
}
|
|
|
|
/* Get size as seen by block device. */
|
|
sectors = get_sectors(lodev);
|
|
if (!sectors) {
|
|
ERROR("Failed to read device size");
|
|
goto lo_cleanup;
|
|
}
|
|
|
|
/* Mount loopback device with dm-crypt using the encryption key. */
|
|
INFO("Setting up dm-crypt %s as %s.", lodev, dmcrypt_dev);
|
|
if (!dm_setup(sectors, encryption_key, dmcrypt_name, lodev,
|
|
dmcrypt_dev)) {
|
|
ERROR("dm_setup failed");
|
|
goto lo_cleanup;
|
|
}
|
|
|
|
/* Decide now if any migration will happen. If so, we will not
|
|
* grow the new filesystem in the background, since we need to
|
|
* copy the contents over before /var is valid again.
|
|
*/
|
|
if (!rebuild)
|
|
migrate_allowed = 0;
|
|
if (migrate_allowed) {
|
|
for (bind = bind_mounts; bind->src; ++ bind) {
|
|
if (migrate_contents(bind, MIGRATE_TEST_ONLY))
|
|
migrate_needed = 1;
|
|
}
|
|
}
|
|
|
|
/* Calculate filesystem min/max size. */
|
|
blocks_max = sectors / (kExt4BlockSize / kSectorSize);
|
|
blocks_min = kExt4MinBytes / kExt4BlockSize;
|
|
if (migrate_needed && migrate_allowed) {
|
|
off_t fs_bytes_min;
|
|
size_t calc_blocks_min;
|
|
/* When doing a migration, the new filesystem must be
|
|
* large enough to hold what we're going to migrate.
|
|
* Instead of walking the bind mount sources, which would
|
|
* be IO and time expensive, just read the bytes-used
|
|
* value from statvfs (plus 10% for overhead). It will
|
|
* be too large, since it includes the eCryptFS data, so
|
|
* we must cap at the max filesystem size just in case.
|
|
*/
|
|
|
|
/* Bytes used in stateful partition plus 10%. */
|
|
fs_bytes_min = stateful_statbuf.f_blocks -
|
|
stateful_statbuf.f_bfree;
|
|
fs_bytes_min *= stateful_statbuf.f_frsize;
|
|
DEBUG("Stateful bytes used: %llu",
|
|
(unsigned long long)fs_bytes_min);
|
|
fs_bytes_min *= kMigrationSizeMultiplier;
|
|
|
|
/* Minimum blocks needed for that many bytes. */
|
|
calc_blocks_min = fs_bytes_min / kExt4BlockSize;
|
|
/* Do not use more than blocks_max. */
|
|
if (calc_blocks_min > blocks_max)
|
|
calc_blocks_min = blocks_max;
|
|
/* Do not use less than blocks_min. */
|
|
else if (calc_blocks_min < blocks_min)
|
|
calc_blocks_min = blocks_min;
|
|
|
|
DEBUG("Maximum fs blocks: %zu", blocks_max);
|
|
DEBUG("Minimum fs blocks: %zu", blocks_min);
|
|
DEBUG("Migration blocks chosen: %zu", calc_blocks_min);
|
|
blocks_min = calc_blocks_min;
|
|
}
|
|
|
|
if (rebuild) {
|
|
INFO("Building filesystem on %s "
|
|
"(blocksize:%zu, min:%zu, max:%zu).",
|
|
dmcrypt_dev, kExt4BlockSize, blocks_min, blocks_max);
|
|
if (!filesystem_build(dmcrypt_dev, kExt4BlockSize,
|
|
blocks_min, blocks_max))
|
|
goto dm_cleanup;
|
|
}
|
|
|
|
/* Mount the dm-crypt partition finally. */
|
|
INFO("Mounting %s onto %s.", dmcrypt_dev, encrypted_mount);
|
|
if (access(encrypted_mount, R_OK) &&
|
|
mkdir(encrypted_mount, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH)) {
|
|
PERROR(dmcrypt_dev);
|
|
goto dm_cleanup;
|
|
}
|
|
if (mount(dmcrypt_dev, encrypted_mount, kEncryptedFSType,
|
|
MS_NODEV | MS_NOEXEC | MS_NOSUID | MS_RELATIME,
|
|
"discard")) {
|
|
PERROR("mount(%s,%s)", dmcrypt_dev, encrypted_mount);
|
|
goto dm_cleanup;
|
|
}
|
|
|
|
/* Always spawn filesystem resizer, in case growth was interrupted. */
|
|
/* TODO(keescook): if already full size, don't resize. */
|
|
spawn_resizer(dmcrypt_dev, blocks_min, blocks_max);
|
|
|
|
/* If the legacy lockbox NVRAM area exists, we've rebuilt the
|
|
* filesystem, and there are old bind sources on disk, attempt
|
|
* migration.
|
|
*/
|
|
if (migrate_needed && migrate_allowed) {
|
|
/* Migration needs to happen before bind mounting because
|
|
* some partitions were not already on the stateful partition,
|
|
* and would be over-mounted by the new bind mount.
|
|
*/
|
|
for (bind = bind_mounts; bind->src; ++ bind)
|
|
migrate_contents(bind, MIGRATE_FOR_REAL);
|
|
}
|
|
|
|
/* Perform bind mounts. */
|
|
for (bind = bind_mounts; bind->src; ++ bind) {
|
|
INFO("Bind mounting %s onto %s.", bind->src, bind->dst);
|
|
if (check_bind(bind, BIND_SOURCE) ||
|
|
check_bind(bind, BIND_DEST))
|
|
goto unbind;
|
|
if (mount(bind->src, bind->dst, "none", MS_BIND, NULL)) {
|
|
PERROR("mount(%s,%s)", bind->src, bind->dst);
|
|
goto unbind;
|
|
}
|
|
}
|
|
|
|
/* Devices that are not using NVRAM for their system key do not
|
|
* need to wait for the NVRAM area to be populated by Cryptohome
|
|
* and a call to "finalize". Devices that already have the NVRAM
|
|
* area populated and are being rebuilt don't need to wait for
|
|
* Cryptohome because the NVRAM area isn't going to change.
|
|
*/
|
|
if (rebuild && has_system_key)
|
|
finalize(system_key, encryption_key);
|
|
|
|
free(lodev);
|
|
return 1;
|
|
|
|
unbind:
|
|
for (bind = bind_mounts; bind->src; ++ bind) {
|
|
INFO("Unmounting %s.", bind->dst);
|
|
umount(bind->dst);
|
|
}
|
|
|
|
INFO("Unmounting %s.", encrypted_mount);
|
|
umount(encrypted_mount);
|
|
|
|
dm_cleanup:
|
|
INFO("Removing %s.", dmcrypt_dev);
|
|
/* TODO(keescook): something holds this open briefly on mkfs failure
|
|
* and I haven't been able to catch it yet. Adding an "fuser" call
|
|
* here is sufficient to lose the race. Instead, just sleep during
|
|
* the error path.
|
|
*/
|
|
sleep(1);
|
|
dm_teardown(dmcrypt_dev);
|
|
|
|
lo_cleanup:
|
|
INFO("Unlooping %s.", lodev);
|
|
loop_detach(lodev);
|
|
|
|
failed:
|
|
free(lodev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Clean up all bind mounts, mounts, attaches, etc. Only the final
|
|
* action informs the return value. This makes it so that failures
|
|
* can be cleaned up from, and continue the shutdown process on a
|
|
* second call. If the loopback cannot be found, claim success.
|
|
*/
|
|
static int shutdown(void)
|
|
{
|
|
struct bind_mount *bind;
|
|
|
|
for (bind = bind_mounts; bind->src; ++ bind) {
|
|
INFO("Unmounting %s.", bind->dst);
|
|
errno = 0;
|
|
/* Allow either success or a "not mounted" failure. */
|
|
if (umount(bind->dst)) {
|
|
if (errno != EINVAL) {
|
|
PERROR("umount(%s)", bind->dst);
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
}
|
|
|
|
INFO("Unmounting %s.", encrypted_mount);
|
|
errno = 0;
|
|
/* Allow either success or a "not mounted" failure. */
|
|
if (umount(encrypted_mount)) {
|
|
if (errno != EINVAL) {
|
|
PERROR("umount(%s)", encrypted_mount);
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
/* Optionally run fsck on the device after umount. */
|
|
if (getenv("MOUNT_ENCRYPTED_FSCK")) {
|
|
char *cmd;
|
|
|
|
if (asprintf(&cmd, "fsck -a %s", dmcrypt_dev) == -1)
|
|
PERROR("asprintf");
|
|
else {
|
|
int rc;
|
|
|
|
rc = system(cmd);
|
|
if (rc != 0)
|
|
ERROR("'%s' failed: %d", cmd, rc);
|
|
}
|
|
}
|
|
|
|
INFO("Removing %s.", dmcrypt_dev);
|
|
if (!dm_teardown(dmcrypt_dev))
|
|
ERROR("dm_teardown(%s)", dmcrypt_dev);
|
|
|
|
INFO("Unlooping %s (named %s).", block_path, dmcrypt_name);
|
|
if (!loop_detach_name(dmcrypt_name)) {
|
|
ERROR("loop_detach_name(%s)", dmcrypt_name);
|
|
return EXIT_FAILURE;
|
|
}
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
static void check_mount_states(void)
|
|
{
|
|
struct bind_mount *bind;
|
|
|
|
/* Verify stateful partition exists and is mounted. */
|
|
if (access(stateful_mount, R_OK) ||
|
|
same_vfs(stateful_mount, rootdir)) {
|
|
INFO("%s is not mounted.", stateful_mount);
|
|
exit(1);
|
|
}
|
|
|
|
/* Verify encrypted partition is missing or not already mounted. */
|
|
if (access(encrypted_mount, R_OK) == 0 &&
|
|
!same_vfs(encrypted_mount, stateful_mount)) {
|
|
INFO("%s already appears to be mounted.", encrypted_mount);
|
|
exit(0);
|
|
}
|
|
|
|
/* Verify that bind mount targets exist. */
|
|
for (bind = bind_mounts; bind->src; ++ bind) {
|
|
if (access(bind->dst, R_OK)) {
|
|
PERROR("%s mount point is missing.", bind->dst);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Verify that old bind mounts on stateful haven't happened yet. */
|
|
for (bind = bind_mounts; bind->src; ++ bind) {
|
|
if (bind->submount)
|
|
continue;
|
|
|
|
if (same_vfs(bind->dst, stateful_mount)) {
|
|
INFO("%s already bind mounted.", bind->dst);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
INFO("VFS mount state sanity check ok.");
|
|
}
|
|
|
|
static int report_info(void)
|
|
{
|
|
uint8_t system_key[DIGEST_LENGTH];
|
|
uint8_t owned = 0;
|
|
struct bind_mount *mnt;
|
|
int old_lockbox = -1;
|
|
|
|
printf("TPM: %s\n", has_tpm ? "yes" : "no");
|
|
if (has_tpm) {
|
|
printf("TPM Owned: %s\n", tpm_owned(&owned) != TPM_SUCCESS ?
|
|
"fail" : (owned ? "yes" : "no"));
|
|
}
|
|
printf("ChromeOS: %s\n", has_chromefw() ? "yes" : "no");
|
|
printf("CR48: %s\n", is_cr48() ? "yes" : "no");
|
|
if (has_chromefw()) {
|
|
int rc;
|
|
rc = get_nvram_key(system_key, &old_lockbox);
|
|
if (!rc)
|
|
printf("NVRAM: missing\n");
|
|
else {
|
|
printf("NVRAM: %s, %s\n",
|
|
old_lockbox ? "legacy" : "modern",
|
|
rc ? "available" : "ignored");
|
|
}
|
|
}
|
|
else {
|
|
printf("NVRAM: not present\n");
|
|
}
|
|
|
|
printf("rootdir: %s\n", rootdir);
|
|
printf("stateful_mount: %s\n", stateful_mount);
|
|
printf("key_path: %s\n", key_path);
|
|
printf("block_path: %s\n", block_path);
|
|
printf("encrypted_mount: %s\n", encrypted_mount);
|
|
printf("dmcrypt_name: %s\n", dmcrypt_name);
|
|
printf("dmcrypt_dev: %s\n", dmcrypt_dev);
|
|
printf("bind mounts:\n");
|
|
for (mnt = bind_mounts; mnt->src; ++mnt) {
|
|
printf("\tsrc:%s\n", mnt->src);
|
|
printf("\tdst:%s\n", mnt->dst);
|
|
printf("\tprevious:%s\n", mnt->previous);
|
|
printf("\tpending:%s\n", mnt->pending);
|
|
printf("\towner:%s\n", mnt->owner);
|
|
printf("\tmode:%o\n", mnt->mode);
|
|
printf("\tsubmount:%d\n", mnt->submount);
|
|
printf("\n");
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
/* This expects "mnt" to be allocated and initialized to NULL bytes. */
|
|
static int dup_bind_mount(struct bind_mount *mnt, struct bind_mount *old,
|
|
char *dir)
|
|
{
|
|
if (old->src && asprintf(&mnt->src, "%s%s", dir, old->src) == -1)
|
|
goto fail;
|
|
if (old->dst && asprintf(&mnt->dst, "%s%s", dir, old->dst) == -1)
|
|
goto fail;
|
|
if (old->previous && asprintf(&mnt->previous, "%s%s", dir,
|
|
old->previous) == -1)
|
|
goto fail;
|
|
if (old->pending && asprintf(&mnt->pending, "%s%s", dir,
|
|
old->pending) == -1)
|
|
goto fail;
|
|
if (!(mnt->owner = strdup(old->owner)))
|
|
goto fail;
|
|
if (!(mnt->group = strdup(old->group)))
|
|
goto fail;
|
|
mnt->mode = old->mode;
|
|
mnt->submount = old->submount;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
perror(__FUNCTION__);
|
|
return 1;
|
|
}
|
|
|
|
static void prepare_paths(void)
|
|
{
|
|
char *dir = NULL;
|
|
struct bind_mount *old;
|
|
struct bind_mount *mnt;
|
|
|
|
mnt = bind_mounts = calloc(sizeof(bind_mounts_default) /
|
|
sizeof(*bind_mounts_default),
|
|
sizeof(*bind_mounts_default));
|
|
if (!mnt) {
|
|
perror("calloc");
|
|
exit(1);
|
|
}
|
|
|
|
if ((dir = getenv("MOUNT_ENCRYPTED_ROOT")) != NULL) {
|
|
unsigned char digest[DIGEST_LENGTH];
|
|
gchar *hex;
|
|
|
|
if (asprintf(&rootdir, "%s/", dir) == -1)
|
|
goto fail;
|
|
|
|
/* Generate a shortened hash for non-default cryptnames,
|
|
* which will get re-used in the loopback name, which
|
|
* must be less than 64 (LO_NAME_SIZE) bytes. */
|
|
sha256(dir, digest);
|
|
hex = stringify_hex(digest, sizeof(digest));
|
|
hex[17] = '\0';
|
|
if (asprintf(&dmcrypt_name, "%s_%s", kCryptDevName,
|
|
hex) == -1)
|
|
goto fail;
|
|
g_free(hex);
|
|
} else {
|
|
rootdir = "/";
|
|
if (!(dmcrypt_name = strdup(kCryptDevName)))
|
|
goto fail;
|
|
}
|
|
|
|
if (asprintf(&stateful_mount, "%s%s", rootdir, STATEFUL_MNT) == -1)
|
|
goto fail;
|
|
if (asprintf(&key_path, "%s%s", rootdir,
|
|
STATEFUL_MNT "/encrypted.key") == -1)
|
|
goto fail;
|
|
if (asprintf(&block_path, "%s%s", rootdir,
|
|
STATEFUL_MNT "/encrypted.block") == -1)
|
|
goto fail;
|
|
if (asprintf(&encrypted_mount, "%s%s", rootdir, ENCRYPTED_MNT) == -1)
|
|
goto fail;
|
|
if (asprintf(&dmcrypt_dev, "/dev/mapper/%s", dmcrypt_name) == -1)
|
|
goto fail;
|
|
|
|
for (old = bind_mounts_default; old->src; ++old) {
|
|
if (dup_bind_mount(mnt++, old, rootdir))
|
|
exit(1);
|
|
}
|
|
|
|
return;
|
|
|
|
fail:
|
|
perror("asprintf");
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int okay;
|
|
|
|
INFO_INIT("Starting.");
|
|
prepare_paths();
|
|
tpm_init();
|
|
|
|
if (argc > 1) {
|
|
if (!strcmp(argv[1], "umount"))
|
|
return shutdown();
|
|
if (!strcmp(argv[1], "info"))
|
|
return report_info();
|
|
if (!strcmp(argv[1], "finalize"))
|
|
return finalize_from_cmdline(argc > 2 ? argv[2] : NULL);
|
|
|
|
fprintf(stderr, "Usage: %s [info|finalize|umount]\n",
|
|
argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
check_mount_states();
|
|
|
|
okay = setup_encrypted();
|
|
if (!okay) {
|
|
INFO("Setup failed -- clearing files and retrying.");
|
|
unlink(key_path);
|
|
unlink(block_path);
|
|
okay = setup_encrypted();
|
|
}
|
|
|
|
INFO_DONE("Done.");
|
|
|
|
/* Continue boot. */
|
|
return !okay;
|
|
}
|