class Integrations::Openai::ProcessorService < Integrations::OpenaiBaseService AGENT_INSTRUCTION = 'You are a helpful support agent.'.freeze LANGUAGE_INSTRUCTION = 'Ensure that the reply should be in user language.'.freeze def reply_suggestion_message make_api_call(reply_suggestion_body) end def summarize_message make_api_call(summarize_body) end def rephrase_message make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please rephrase the following response. " \ "#{LANGUAGE_INSTRUCTION}")) end def fix_spelling_grammar_message make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please fix the spelling and grammar of the following response. " \ "#{LANGUAGE_INSTRUCTION}")) end def shorten_message make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please shorten the following response. " \ "#{LANGUAGE_INSTRUCTION}")) end def expand_message make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please expand the following response. " \ "#{LANGUAGE_INSTRUCTION}")) end def make_friendly_message make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please make the following response more friendly. " \ "#{LANGUAGE_INSTRUCTION}")) end def make_formal_message make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please make the following response more formal. " \ "#{LANGUAGE_INSTRUCTION}")) end def simplify_message make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please simplify the following response. " \ "#{LANGUAGE_INSTRUCTION}")) end private def prompt_from_file(file_name, enterprise: false) path = enterprise ? 'enterprise/lib/enterprise/integrations/openai_prompts' : 'lib/integrations/openai/openai_prompts' Rails.root.join(path, "#{file_name}.txt").read end def build_api_call_body(system_content, user_content = event['data']['content']) { model: GPT_MODEL, messages: [ { role: 'system', content: system_content }, { role: 'user', content: user_content } ] }.to_json end def conversation_messages(in_array_format: false) messages = init_messages_body(in_array_format) add_messages_until_token_limit(conversation, messages, in_array_format) end def add_messages_until_token_limit(conversation, messages, in_array_format, start_from = 0) character_count = start_from conversation.messages.where(message_type: [:incoming, :outgoing]).where(private: false).reorder('id desc').each do |message| character_count, message_added = add_message_if_within_limit(character_count, message, messages, in_array_format) break unless message_added end messages end def add_message_if_within_limit(character_count, message, messages, in_array_format) if valid_message?(message, character_count) add_message_to_list(message, messages, in_array_format) character_count += message.content.length [character_count, true] else [character_count, false] end end def valid_message?(message, character_count) message.content.present? && character_count + message.content.length <= TOKEN_LIMIT end def add_message_to_list(message, messages, in_array_format) formatted_message = format_message(message, in_array_format) messages.prepend(formatted_message) end def init_messages_body(in_array_format) in_array_format ? [] : '' end def format_message(message, in_array_format) in_array_format ? format_message_in_array(message) : format_message_in_string(message) end def format_message_in_array(message) { role: (message.incoming? ? 'user' : 'assistant'), content: message.content } end def format_message_in_string(message) sender_type = message.incoming? ? 'Customer' : 'Agent' "#{sender_type} #{message.sender&.name} : #{message.content}\n" end def summarize_body { model: GPT_MODEL, messages: [ { role: 'system', content: prompt_from_file('summary', enterprise: false) }, { role: 'user', content: conversation_messages } ] }.to_json end def reply_suggestion_body { model: GPT_MODEL, messages: [ { role: 'system', content: prompt_from_file('reply', enterprise: false) } ].concat(conversation_messages(in_array_format: true)) }.to_json end end Integrations::Openai::ProcessorService.prepend_mod_with('Integrations::OpenaiProcessorService')