mirror of
				https://github.com/lingble/chatwoot.git
				synced 2025-11-03 20:48:07 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			138 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
class Integrations::Openai::ProcessorService < Integrations::OpenaiBaseService
 | 
						|
  AGENT_INSTRUCTION = 'You are a helpful support agent.'.freeze
 | 
						|
  LANGUAGE_INSTRUCTION = 'Ensure that the reply should be in user language.'.freeze
 | 
						|
  def reply_suggestion_message
 | 
						|
    make_api_call(reply_suggestion_body)
 | 
						|
  end
 | 
						|
 | 
						|
  def summarize_message
 | 
						|
    make_api_call(summarize_body)
 | 
						|
  end
 | 
						|
 | 
						|
  def rephrase_message
 | 
						|
    make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please rephrase the following response. " \
 | 
						|
                                      "#{LANGUAGE_INSTRUCTION}"))
 | 
						|
  end
 | 
						|
 | 
						|
  def fix_spelling_grammar_message
 | 
						|
    make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please fix the spelling and grammar of the following response. " \
 | 
						|
                                      "#{LANGUAGE_INSTRUCTION}"))
 | 
						|
  end
 | 
						|
 | 
						|
  def shorten_message
 | 
						|
    make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please shorten the following response. " \
 | 
						|
                                      "#{LANGUAGE_INSTRUCTION}"))
 | 
						|
  end
 | 
						|
 | 
						|
  def expand_message
 | 
						|
    make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please expand the following response. " \
 | 
						|
                                      "#{LANGUAGE_INSTRUCTION}"))
 | 
						|
  end
 | 
						|
 | 
						|
  def make_friendly_message
 | 
						|
    make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please make the following response more friendly. " \
 | 
						|
                                      "#{LANGUAGE_INSTRUCTION}"))
 | 
						|
  end
 | 
						|
 | 
						|
  def make_formal_message
 | 
						|
    make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please make the following response more formal. " \
 | 
						|
                                      "#{LANGUAGE_INSTRUCTION}"))
 | 
						|
  end
 | 
						|
 | 
						|
  def simplify_message
 | 
						|
    make_api_call(build_api_call_body("#{AGENT_INSTRUCTION} Please simplify the following response. " \
 | 
						|
                                      "#{LANGUAGE_INSTRUCTION}"))
 | 
						|
  end
 | 
						|
 | 
						|
  private
 | 
						|
 | 
						|
  def prompt_from_file(file_name, enterprise: false)
 | 
						|
    path = enterprise ? 'enterprise/lib/enterprise/integrations/openai_prompts' : 'lib/integrations/openai/openai_prompts'
 | 
						|
    Rails.root.join(path, "#{file_name}.txt").read
 | 
						|
  end
 | 
						|
 | 
						|
  def build_api_call_body(system_content, user_content = event['data']['content'])
 | 
						|
    {
 | 
						|
      model: GPT_MODEL,
 | 
						|
      messages: [
 | 
						|
        { role: 'system', content: system_content },
 | 
						|
        { role: 'user', content: user_content }
 | 
						|
      ]
 | 
						|
    }.to_json
 | 
						|
  end
 | 
						|
 | 
						|
  def conversation_messages(in_array_format: false)
 | 
						|
    messages = init_messages_body(in_array_format)
 | 
						|
 | 
						|
    add_messages_until_token_limit(conversation, messages, in_array_format)
 | 
						|
  end
 | 
						|
 | 
						|
  def add_messages_until_token_limit(conversation, messages, in_array_format, start_from = 0)
 | 
						|
    character_count = start_from
 | 
						|
    conversation.messages.where(message_type: [:incoming, :outgoing]).where(private: false).reorder('id desc').each do |message|
 | 
						|
      character_count, message_added = add_message_if_within_limit(character_count, message, messages, in_array_format)
 | 
						|
      break unless message_added
 | 
						|
    end
 | 
						|
    messages
 | 
						|
  end
 | 
						|
 | 
						|
  def add_message_if_within_limit(character_count, message, messages, in_array_format)
 | 
						|
    if valid_message?(message, character_count)
 | 
						|
      add_message_to_list(message, messages, in_array_format)
 | 
						|
      character_count += message.content.length
 | 
						|
      [character_count, true]
 | 
						|
    else
 | 
						|
      [character_count, false]
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  def valid_message?(message, character_count)
 | 
						|
    message.content.present? && character_count + message.content.length <= TOKEN_LIMIT
 | 
						|
  end
 | 
						|
 | 
						|
  def add_message_to_list(message, messages, in_array_format)
 | 
						|
    formatted_message = format_message(message, in_array_format)
 | 
						|
    messages.prepend(formatted_message)
 | 
						|
  end
 | 
						|
 | 
						|
  def init_messages_body(in_array_format)
 | 
						|
    in_array_format ? [] : ''
 | 
						|
  end
 | 
						|
 | 
						|
  def format_message(message, in_array_format)
 | 
						|
    in_array_format ? format_message_in_array(message) : format_message_in_string(message)
 | 
						|
  end
 | 
						|
 | 
						|
  def format_message_in_array(message)
 | 
						|
    { role: (message.incoming? ? 'user' : 'assistant'), content: message.content }
 | 
						|
  end
 | 
						|
 | 
						|
  def format_message_in_string(message)
 | 
						|
    sender_type = message.incoming? ? 'Customer' : 'Agent'
 | 
						|
    "#{sender_type} #{message.sender&.name} : #{message.content}\n"
 | 
						|
  end
 | 
						|
 | 
						|
  def summarize_body
 | 
						|
    {
 | 
						|
      model: GPT_MODEL,
 | 
						|
      messages: [
 | 
						|
        { role: 'system',
 | 
						|
          content: prompt_from_file('summary', enterprise: false) },
 | 
						|
        { role: 'user', content: conversation_messages }
 | 
						|
      ]
 | 
						|
    }.to_json
 | 
						|
  end
 | 
						|
 | 
						|
  def reply_suggestion_body
 | 
						|
    {
 | 
						|
      model: GPT_MODEL,
 | 
						|
      messages: [
 | 
						|
        { role: 'system',
 | 
						|
          content: prompt_from_file('reply', enterprise: false) }
 | 
						|
      ].concat(conversation_messages(in_array_format: true))
 | 
						|
    }.to_json
 | 
						|
  end
 | 
						|
end
 | 
						|
 | 
						|
Integrations::Openai::ProcessorService.prepend_mod_with('Integrations::OpenaiProcessorService')
 |