Files
chatwoot/lib/integrations/openai/processor_service.rb
Muhsin Keloth 91c1061214 feat: Add more AI options (#7502)
Co-authored-by: Shivam Mishra <scm.mymail@gmail.com>
Co-authored-by: Nithin David Thomas <1277421+nithindavid@users.noreply.github.com>
Co-authored-by: Pranav Raj S <pranav@chatwoot.com>
2023-07-16 12:25:16 -07:00

158 lines
4.7 KiB
Ruby

class Integrations::Openai::ProcessorService < Integrations::OpenaiBaseService
AGENT_INSTRUCTION = 'You are a helpful support agent.'.freeze
LANGUAGE_INSTRUCTION = 'Ensure that the reply should be in user language.'.freeze
def reply_suggestion_message
make_api_call(reply_suggestion_body)
end
def summarize_message
make_api_call(summarize_body)
end
def rephrase_message
make_api_call(rephrase_body)
end
def fix_spelling_grammar_message
make_api_call(fix_spelling_grammar_body)
end
def shorten_message
make_api_call(shorten_body)
end
def expand_message
make_api_call(expand_body)
end
def make_friendly_message
make_api_call(make_friendly_body)
end
def make_formal_message
make_api_call(make_formal_body)
end
def simplify_message
make_api_call(simplify_body)
end
private
def rephrase_body
build_api_call_body("#{AGENT_INSTRUCTION} Please rephrase the following response. " \
"#{LANGUAGE_INSTRUCTION}")
end
def fix_spelling_grammar_body
build_api_call_body("#{AGENT_INSTRUCTION} Please fix the spelling and grammar of the following response. " \
"#{LANGUAGE_INSTRUCTION}")
end
def shorten_body
build_api_call_body("#{AGENT_INSTRUCTION} Please shorten the following response. #{LANGUAGE_INSTRUCTION}")
end
def expand_body
build_api_call_body("#{AGENT_INSTRUCTION} Please expand the following response. #{LANGUAGE_INSTRUCTION}")
end
def make_friendly_body
build_api_call_body("#{AGENT_INSTRUCTION} Please make the following response more friendly. #{LANGUAGE_INSTRUCTION}")
end
def make_formal_body
build_api_call_body("#{AGENT_INSTRUCTION} Please make the following response more formal. #{LANGUAGE_INSTRUCTION}")
end
def simplify_body
build_api_call_body("#{AGENT_INSTRUCTION} Please simplify the following response. #{LANGUAGE_INSTRUCTION}")
end
def build_api_call_body(system_content, user_content = event['data']['content'])
{
model: GPT_MODEL,
messages: [
{ role: 'system', content: system_content },
{ role: 'user', content: user_content }
]
}.to_json
end
def conversation_messages(in_array_format: false)
conversation = find_conversation
messages = init_messages_body(in_array_format)
add_messages_until_token_limit(conversation, messages, in_array_format)
end
def add_messages_until_token_limit(conversation, messages, in_array_format, start_from = 0)
character_count = start_from
conversation.messages.chat.reorder('id desc').each do |message|
character_count, message_added = add_message_if_within_limit(character_count, message, messages, in_array_format)
break unless message_added
end
messages
end
def add_message_if_within_limit(character_count, message, messages, in_array_format)
if valid_message?(message, character_count)
add_message_to_list(message, messages, in_array_format)
character_count += message.content.length
[character_count, true]
else
[character_count, false]
end
end
def valid_message?(message, character_count)
message.content.present? && character_count + message.content.length <= TOKEN_LIMIT
end
def add_message_to_list(message, messages, in_array_format)
formatted_message = format_message(message, in_array_format)
messages.prepend(formatted_message)
end
def init_messages_body(in_array_format)
in_array_format ? [] : ''
end
def format_message(message, in_array_format)
in_array_format ? format_message_in_array(message) : format_message_in_string(message)
end
def format_message_in_array(message)
{ role: (message.incoming? ? 'user' : 'assistant'), content: message.content }
end
def format_message_in_string(message)
sender_type = message.incoming? ? 'Customer' : 'Agent'
"#{sender_type} #{message.sender&.name} : #{message.content}\n"
end
def summarize_body
{
model: GPT_MODEL,
messages: [
{ role: 'system',
content: 'Please summarize the key points from the following conversation between support agents and ' \
'customer as bullet points for the next support agent looking into the conversation. Reply in the user\'s language.' },
{ role: 'user', content: conversation_messages }
]
}.to_json
end
def reply_suggestion_body
{
model: GPT_MODEL,
messages: [
{ role: 'system',
content: 'Please suggest a reply to the following conversation between support agents and customer. Reply in the user\'s language.' }
].concat(conversation_messages(in_array_format: true))
}.to_json
end
end
Integrations::Openai::ProcessorService.prepend_mod_with('Integrations::OpenaiProcessorService')