mirror of
https://github.com/lingble/chatwoot.git
synced 2025-11-02 12:08:01 +00:00
104 lines
3.2 KiB
Ruby
104 lines
3.2 KiB
Ruby
class Integrations::Openai::ProcessorService < Integrations::OpenaiBaseService
|
|
def reply_suggestion_message
|
|
make_api_call(reply_suggestion_body)
|
|
end
|
|
|
|
def summarize_message
|
|
make_api_call(summarize_body)
|
|
end
|
|
|
|
def rephrase_message
|
|
make_api_call(rephrase_body)
|
|
end
|
|
|
|
private
|
|
|
|
def rephrase_body
|
|
{
|
|
model: GPT_MODEL,
|
|
messages: [
|
|
{ role: 'system',
|
|
content: "You are a helpful support agent. Please rephrase the following response to a more #{event['data']['tone']} tone. " \
|
|
"Reply in the user's language." },
|
|
{ role: 'user', content: event['data']['content'] }
|
|
]
|
|
}.to_json
|
|
end
|
|
|
|
def conversation_messages(in_array_format: false)
|
|
conversation = find_conversation
|
|
messages = init_messages_body(in_array_format)
|
|
|
|
add_messages_until_token_limit(conversation, messages, in_array_format)
|
|
end
|
|
|
|
def add_messages_until_token_limit(conversation, messages, in_array_format, start_from = 0)
|
|
character_count = start_from
|
|
conversation.messages.chat.reorder('id desc').each do |message|
|
|
character_count, message_added = add_message_if_within_limit(character_count, message, messages, in_array_format)
|
|
break unless message_added
|
|
end
|
|
messages
|
|
end
|
|
|
|
def add_message_if_within_limit(character_count, message, messages, in_array_format)
|
|
if valid_message?(message, character_count)
|
|
add_message_to_list(message, messages, in_array_format)
|
|
character_count += message.content.length
|
|
[character_count, true]
|
|
else
|
|
[character_count, false]
|
|
end
|
|
end
|
|
|
|
def valid_message?(message, character_count)
|
|
message.content.present? && character_count + message.content.length <= TOKEN_LIMIT
|
|
end
|
|
|
|
def add_message_to_list(message, messages, in_array_format)
|
|
formatted_message = format_message(message, in_array_format)
|
|
messages.prepend(formatted_message)
|
|
end
|
|
|
|
def init_messages_body(in_array_format)
|
|
in_array_format ? [] : ''
|
|
end
|
|
|
|
def format_message(message, in_array_format)
|
|
in_array_format ? format_message_in_array(message) : format_message_in_string(message)
|
|
end
|
|
|
|
def format_message_in_array(message)
|
|
{ role: (message.incoming? ? 'user' : 'assistant'), content: message.content }
|
|
end
|
|
|
|
def format_message_in_string(message)
|
|
sender_type = message.incoming? ? 'Customer' : 'Agent'
|
|
"#{sender_type} #{message.sender&.name} : #{message.content}\n"
|
|
end
|
|
|
|
def summarize_body
|
|
{
|
|
model: GPT_MODEL,
|
|
messages: [
|
|
{ role: 'system',
|
|
content: 'Please summarize the key points from the following conversation between support agents and ' \
|
|
'customer as bullet points for the next support agent looking into the conversation. Reply in the user\'s language.' },
|
|
{ role: 'user', content: conversation_messages }
|
|
]
|
|
}.to_json
|
|
end
|
|
|
|
def reply_suggestion_body
|
|
{
|
|
model: GPT_MODEL,
|
|
messages: [
|
|
{ role: 'system',
|
|
content: 'Please suggest a reply to the following conversation between support agents and customer. Reply in the user\'s language.' }
|
|
].concat(conversation_messages(in_array_format: true))
|
|
}.to_json
|
|
end
|
|
end
|
|
|
|
Integrations::Openai::ProcessorService.prepend_mod_with('Integrations::OpenaiProcessorService')
|