The context is used for cancellation and to support contextual logging.
In most cases, alternative *WithContext APIs get added, except for
NewIntegerResourceVersionMutationCache where code searches indicate that the
API is not used downstream.
An API break around SharedInformer couldn't be avoided because the
alternative (keeping the interface unchanged and adding a second one with
the new method) would have been worse. controller-runtime needs to be updated
because it implements that interface in a test package. Downstream consumers of
controller-runtime will work unless they use those test package.
Converting Kubernetes to use the other new alternatives will follow. In the
meantime, usage of the new alternatives cannot be enforced via logcheck
yet (see https://github.com/kubernetes/kubernetes/issues/126379 for the
process).
Passing context through and checking it for cancellation is tricky for event
handlers. A better approach is to map the context cancellation to the normal
removal of an event handler via a helper goroutine. Thanks to the new
HandleErrorWithLogr and HandleCrashWithLogr, remembering the logger is
sufficient for handling problems at runtime.
Using the "normal" logic for a feature gated field simplifies the
implementation of the feature gate.
There is one (entirely theoretic!) problem with updating from 1.31: if a claim
was allocated in 1.31 with admin access, the status field was not set because
it didn't exist yet. If a driver now follows the current definition of "unset =
off", then it will not grant admin access even though it should. This is
theoretic because drivers are starting to support admin access with 1.32, so
there shouldn't be any claim where this problem could occur.
The new DRAAdminAccess feature gate has the following effects:
- If disabled in the apiserver, the spec.devices.requests[*].adminAccess
field gets cleared. Same in the status. In both cases the scenario
that it was already set and a claim or claim template get updated
is special: in those cases, the field is not cleared.
Also, allocating a claim with admin access is allowed regardless of the
feature gate and the field is not cleared. In practice, the scheduler
will not do that.
- If disabled in the resource claim controller, creating ResourceClaims
with the field set gets rejected. This prevents running workloads
which depend on admin access.
- If disabled in the scheduler, claims with admin access don't get
allocated. The effect is the same.
The alternative would have been to ignore the fields in claim controller and
scheduler. This is bad because a monitoring workload then runs, blocking
resources that probably were meant for production workloads.
These metrics can provide insights into ResourceClaim usage. The total count is
redundant because the apiserver also provides count of resources, but having it
in the same sub-system next to the count of allocated claims might be more
discoverable and helps monitor the controller itself.
This removes the DRAControlPlaneController feature gate, the fields controlled
by it (claim.spec.controller, claim.status.deallocationRequested,
claim.status.allocation.controller, class.spec.suitableNodes), the
PodSchedulingContext type, and all code related to the feature.
The feature gets removed because there is no path towards beta and GA and DRA
with "structured parameters" should be able to replace it.
The resource claim controller is completely agnostic to the claim spec. It
doesn't care about classes or devices, therefore it needs no changes in 1.31
besides the v1alpha2 -> v1alpha3 renaming from a previous commit.
As agreed in https://github.com/kubernetes/enhancements/pull/4709, immediate
allocation is one of those features which can be removed because it makes no
sense for structured parameters and the justification for classic DRA is weak.
This is in preparation for revamping the resource.k8s.io completely. Because
there will be no support for transitioning from v1alpha2 to v1alpha3, the
roundtrip test data for that API in 1.29 and 1.30 gets removed.
Repeating the version in the import name of the API packages is not really
required. It was done for a while to support simpler grepping for usage of
alpha APIs, but there are better ways for that now. So during this transition,
"resourceapi" gets used instead of "resourcev1alpha3" and the version gets
dropped from informer and lister imports. The advantage is that the next bump
to v1beta1 will affect fewer source code lines.
Only source code where the version really matters (like API registration)
retains the versioned import.
This makes the API nicer:
resourceClaims:
- name: with-template
resourceClaimTemplateName: test-inline-claim-template
- name: with-claim
resourceClaimName: test-shared-claim
Previously, this was:
resourceClaims:
- name: with-template
source:
resourceClaimTemplateName: test-inline-claim-template
- name: with-claim
source:
resourceClaimName: test-shared-claim
A more long-term benefit is that other, future alternatives
might not make sense under the "source" umbrella.
This is a breaking change. It's justified because DRA is still
alpha and will have several other API breaks in 1.31.
When allocation was done by the scheduler, the controller needs to do the
deallocation because there is no control-plane controller which could react to
"DeallocationRequested".
- Increase the global level for broadcaster's logging to 3 so that users can ignore event messages by lowering the logging level. It reduces information noise.
- Making sure the context is properly injected into the broadcaster, this will allow the -v flag value to be used also in that broadcaster, rather than the above global value.
- test: use cancellation from ktesting
- golangci-hints: checked error return value
When the resource claim name inside the pod had some suffix like "1a" in
"resource-1a", the generated name suffix got added directly after that, leading
to "my-pod-resource-1ax6zgt".
Adding another hyphen makes the result more readable: "my-pod-resource-1a-x6zgt".
When someone decides that a Pod should definitely run on a specific node, they
can create the Pod with spec.nodeName already set. Some custom scheduler might
do that. Then kubelet starts to check the pod and (if DRA is enabled) will
refuse to run it, either because the claims are still waiting for the first
consumer or the pod wasn't added to reservedFor. Both are things the scheduler
normally does.
Also, if a pod got scheduled while the DRA feature was off in the
kube-scheduler, a pod can reach the same state.
The resource claim controller can handle these two cases by taking over for the
kube-scheduler when nodeName is set. Triggering an allocation is simpler than
in the scheduler because all it takes is creating the right
PodSchedulingContext with spec.selectedNode set. There's no need to list nodes
because that choice was already made, permanently. Adding the pod to
reservedFor also isn't hard.
What's currently missing is triggering de-allocation of claims to re-allocate
them for the desired node. This is not important for claims that get created
for the pod from a template and then only get used once, but it might be
worthwhile to add de-allocation in the future.
The allocation mode is relevant when clearing the reservedFor: for delayed
allocation, deallocation gets requested, for immediate allocation not. Both
should get tested.
All pre-defined claims now use delayed allocation, just as they would if
created normally.
Enabling logging is useful to track what the code is doing.
There are some functional changes:
- The pod handler checks for existence of claims. This
avoids adding pods to the work queue in more cases
when nothing needs to be done, at the cost of
making the event handlers a bit slower. This will become
more important when adding more work to the controller
- The handler for deleted ResourceClaim did not check for
cache.DeletedFinalStateUnknown.
We don't need to remember that a pod got deleted when it had no resource claims
because the code which checks the cached UIDs only checks for pods which have
resource claims.
This addresses the following bad sequence of events:
- controller creates ResourceClaim
- updating pod status fails
- pod gets retried before the informer receives
the created ResourceClaim
- another ResourceClaim gets created
Storing the generated ResourceClaim in a MutationCache ensures that the
controller knows about it during the retry.
A positive side effect is that ResourceClaims now get index by pod owner and
thus iterating over existing ones becomes a bit more efficient.
Generating the name avoids all potential name collisions. It's not clear how
much of a problem that was because users can avoid them and the deterministic
names for generic ephemeral volumes have not led to reports from users. But
using generated names is not too hard either.
What makes it relatively easy is that the new pod.status.resourceClaimStatus
map stores the generated name for kubelet and node authorizer, i.e. the
information in the pod is sufficient to determine the name of the
ResourceClaim.
The resource claim controller becomes a bit more complex and now needs
permission to modify the pod status. The new failure scenario of "ResourceClaim
created, updating pod status fails" is handled with the help of a new special
"resource.kubernetes.io/pod-claim-name" annotation that together with the owner
reference identifies exactly for what a ResourceClaim was generated, so
updating the pod status can be retried for existing ResourceClaims.
The transition from deterministic names is handled with a special case for that
recovery code path: a ResourceClaim with no annotation and a name that follows
the Kubernetes <= 1.27 naming pattern is assumed to be generated for that pod
claim and gets added to the pod status.
There's no immediate need for it, but just in case that it may become relevant,
the name of the generated ResourceClaim may also be left unset to record that
no claim was needed. Components processing such a pod can skip whatever they
normally would do for the claim. To ensure that they do and also cover other
cases properly ("no known field is set", "must check ownership"),
resourceclaim.Name gets extended.
When a pod is done, but not getting removed yet for while, then a claim that
got generated for that pod can be deleted already. This then also triggers
deallocation.
This releases the underlying resource sooner and ensures that another consumer
can get scheduled without being influenced by a decision that was made for the
previous consumer.
An alternative would have been to have the apiserver trigger the deallocation
whenever it sees the `status.reservedFor` getting reduced to zero. But that
then also triggers deallocation when kube-scheduler removes the last
reservation after a failed scheduling cycle. In that case we want to keep the
claim allocated and let the kube-scheduler decide on a case-by-case basis which
claim should get deallocated.
Most of the individual controllers were already converted earlier. Some log
calls were missed or added and then not updated during a rebase. Some of those
get updated here to fill those gaps.
Adding of the name to the logger used by each controller gets
consolidated in this commit. By using the name under which the
controller is registered we ensure that the names in the log
are consistent.
When using these controllers in test/integration/scheduler_perf, the goroutine
leak check there pointed out that broadcaster.Shutdown function wasn't called
and thus goroutines leaked during a test.