The field in fact says that the container runtime should relabel a volume
when running a container with it, it does not say that the volume supports
SELinux. For example, NFS can support SELinux, but we don't want NFS
volumes relabeled, because they can be shared among several Pods.
The package says:
> the libcontainer SELinux package is only built for Linux, so it is
> necessary to have a NOP wrapper which is built for non-Linux platforms
This is not true, Kubernetes now imports
github.com/opencontainers/selinux/go-selinux and it has proper
multiplatform support (i.e. NOOP on non-Linux platforms).
Removing the whole package and calling go-selinux directly.
Before this fix, hint permutations such as:
permutation: [{11 true} {0101 true}]
Could result in merged hints of:
mergedHint: {01 true}
This was possible because both hints in the permutation container a "preferred"
allocation (i.e. the full set of NUMA nodes set in the affinity bitmask are
*required* to satisfy the allocation). With this in place, the simplified logic
we had simply kept the merged hint as preferred as well.
However, what we really want is to ensure that the merged hint is only
preferred if *true* alignment of all resources is possible (i.e. if all hints
in the permutation are preferred AND their affinities are exactly equal).
The only exception to this is if *no* topology information is provided by a
given hint provider. In this case, we assume alignment doesn't matter and only
consider the resources that actually have hints provided for them.
This changes the semantics of permutations of the form:
permutation: [{111 true} {011 true}]
To now result in the merged hint of:
mergedHint: {011 false}
Instead of:
mergedHint: {011 true}
This is arguably how it should always have been though (because a hint should
not be preferred if true alignment isn't possible), and two tests have had to
change to accomodate these new semantics.
This commit changes the merge function to implement the updated logic, adds a
test to verify it is functioning correctly, and updates the two tests mentioned
above to adjust to the new semantics.
Signed-off-by: Kevin Klues <kklues@nvidia.com>
The remote runtime implementation now supports the `verbose` fields,
which are required for consumers like cri-tools to enable multi CRI
version support.
Signed-off-by: Sascha Grunert <sgrunert@redhat.com>
- Allow a podWorker to start if it is blocked by a pod that has been
terminated before starting
- When a pod can't start AND has already been terminated, exit cleanly
- Add a unit test that exercises race conditions in pod workers
host-network pods IPs are obtained from the reported kubelet nodeIPs.
Historically, host-network podIPs are immutable once set, but when
we've added dual-stack support, we didn't consider that the secondary
IP address may not be present at the same time that the primary nodeIP.
If a secondary IP address is added to a node after the host-network pods
IPs are set, we can add the secondary host-network pod IP address
maintaining the current behavior of not updating the current podIPs on
host-network pods.
In the following code pattern, the log message will get logged with v=0 in JSON
output although conceptually it has a higher verbosity:
if klog.V(5).Enabled() {
klog.Info("hello world")
}
Having the actual verbosity in the JSON output is relevant, for example for
filtering out only the important info messages. The solution is to use
klog.V(5).Info or something similar.
Whether the outer if is necessary at all depends on how complex the parameters
are. The return value of klog.V can be captured in a variable and be used
multiple times to avoid the overhead for that function call and to avoid
repeating the verbosity level.