mirror of
				https://github.com/optim-enterprises-bv/kubernetes.git
				synced 2025-11-04 04:08:16 +00:00 
			
		
		
		
	Automatic merge from submit-queue Fix typos and englishify plugin/pkg **What this PR does / why we need it**: Just typos **Which issue this PR fixes**: `None` **Special notes for your reviewer**: Just typos **Release note**: `NONE`
		
			
				
	
	
		
			368 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
/*
 | 
						|
Copyright 2014 The Kubernetes Authors.
 | 
						|
 | 
						|
Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
you may not use this file except in compliance with the License.
 | 
						|
You may obtain a copy of the License at
 | 
						|
 | 
						|
    http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
Unless required by applicable law or agreed to in writing, software
 | 
						|
distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
See the License for the specific language governing permissions and
 | 
						|
limitations under the License.
 | 
						|
*/
 | 
						|
 | 
						|
package priorities
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"math"
 | 
						|
 | 
						|
	"github.com/golang/glog"
 | 
						|
	"k8s.io/kubernetes/pkg/api"
 | 
						|
	"k8s.io/kubernetes/pkg/labels"
 | 
						|
	"k8s.io/kubernetes/plugin/pkg/scheduler/algorithm"
 | 
						|
	priorityutil "k8s.io/kubernetes/plugin/pkg/scheduler/algorithm/priorities/util"
 | 
						|
	schedulerapi "k8s.io/kubernetes/plugin/pkg/scheduler/api"
 | 
						|
	"k8s.io/kubernetes/plugin/pkg/scheduler/schedulercache"
 | 
						|
)
 | 
						|
 | 
						|
func getNonZeroRequests(pod *api.Pod) *schedulercache.Resource {
 | 
						|
	result := &schedulercache.Resource{}
 | 
						|
	for i := range pod.Spec.Containers {
 | 
						|
		container := &pod.Spec.Containers[i]
 | 
						|
		cpu, memory := priorityutil.GetNonzeroRequests(&container.Resources.Requests)
 | 
						|
		result.MilliCPU += cpu
 | 
						|
		result.Memory += memory
 | 
						|
	}
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// The unused capacity is calculated on a scale of 0-10
 | 
						|
// 0 being the lowest priority and 10 being the highest.
 | 
						|
// The more unused resources the higher the score is.
 | 
						|
func calculateUnusedScore(requested int64, capacity int64, node string) int64 {
 | 
						|
	if capacity == 0 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	if requested > capacity {
 | 
						|
		glog.V(4).Infof("Combined requested resources %d from existing pods exceeds capacity %d on node %s",
 | 
						|
			requested, capacity, node)
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	return ((capacity - requested) * 10) / capacity
 | 
						|
}
 | 
						|
 | 
						|
// The used capacity is calculated on a scale of 0-10
 | 
						|
// 0 being the lowest priority and 10 being the highest.
 | 
						|
// The more resources are used the higher the score is. This function
 | 
						|
// is almost a reversed version of calculatUnusedScore (10 - calculateUnusedScore).
 | 
						|
// The main difference is in rounding. It was added to keep the
 | 
						|
// final formula clean and not to modify the widely used (by users
 | 
						|
// in their default scheduling policies) calculateUSedScore.
 | 
						|
func calculateUsedScore(requested int64, capacity int64, node string) int64 {
 | 
						|
	if capacity == 0 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	if requested > capacity {
 | 
						|
		glog.V(4).Infof("Combined requested resources %d from existing pods exceeds capacity %d on node %s",
 | 
						|
			requested, capacity, node)
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	return (requested * 10) / capacity
 | 
						|
}
 | 
						|
 | 
						|
// Calculates host priority based on the amount of unused resources.
 | 
						|
// 'node' has information about the resources on the node.
 | 
						|
// 'pods' is a list of pods currently scheduled on the node.
 | 
						|
func calculateUnusedPriority(pod *api.Pod, podRequests *schedulercache.Resource, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	node := nodeInfo.Node()
 | 
						|
	if node == nil {
 | 
						|
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
 | 
						|
	}
 | 
						|
 | 
						|
	allocatableResources := nodeInfo.AllocatableResource()
 | 
						|
	totalResources := *podRequests
 | 
						|
	totalResources.MilliCPU += nodeInfo.NonZeroRequest().MilliCPU
 | 
						|
	totalResources.Memory += nodeInfo.NonZeroRequest().Memory
 | 
						|
 | 
						|
	cpuScore := calculateUnusedScore(totalResources.MilliCPU, allocatableResources.MilliCPU, node.Name)
 | 
						|
	memoryScore := calculateUnusedScore(totalResources.Memory, allocatableResources.Memory, node.Name)
 | 
						|
	if glog.V(10) {
 | 
						|
		// We explicitly don't do glog.V(10).Infof() to avoid computing all the parameters if this is
 | 
						|
		// not logged. There is visible performance gain from it.
 | 
						|
		glog.V(10).Infof(
 | 
						|
			"%v -> %v: Least Requested Priority, capacity %d millicores %d memory bytes, total request %d millicores %d memory bytes, score %d CPU %d memory",
 | 
						|
			pod.Name, node.Name,
 | 
						|
			allocatableResources.MilliCPU, allocatableResources.Memory,
 | 
						|
			totalResources.MilliCPU, totalResources.Memory,
 | 
						|
			cpuScore, memoryScore,
 | 
						|
		)
 | 
						|
	}
 | 
						|
 | 
						|
	return schedulerapi.HostPriority{
 | 
						|
		Host:  node.Name,
 | 
						|
		Score: int((cpuScore + memoryScore) / 2),
 | 
						|
	}, nil
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the resource used on a node.  'node' has information about the resources on the node.
 | 
						|
// 'pods' is a list of pods currently scheduled on the node.
 | 
						|
func calculateUsedPriority(pod *api.Pod, podRequests *schedulercache.Resource, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	node := nodeInfo.Node()
 | 
						|
	if node == nil {
 | 
						|
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
 | 
						|
	}
 | 
						|
 | 
						|
	allocatableResources := nodeInfo.AllocatableResource()
 | 
						|
	totalResources := *podRequests
 | 
						|
	totalResources.MilliCPU += nodeInfo.NonZeroRequest().MilliCPU
 | 
						|
	totalResources.Memory += nodeInfo.NonZeroRequest().Memory
 | 
						|
 | 
						|
	cpuScore := calculateUsedScore(totalResources.MilliCPU, allocatableResources.MilliCPU, node.Name)
 | 
						|
	memoryScore := calculateUsedScore(totalResources.Memory, allocatableResources.Memory, node.Name)
 | 
						|
	if glog.V(10) {
 | 
						|
		// We explicitly don't do glog.V(10).Infof() to avoid computing all the parameters if this is
 | 
						|
		// not logged. There is visible performance gain from it.
 | 
						|
		glog.V(10).Infof(
 | 
						|
			"%v -> %v: Most Requested Priority, capacity %d millicores %d memory bytes, total request %d millicores %d memory bytes, score %d CPU %d memory",
 | 
						|
			pod.Name, node.Name,
 | 
						|
			allocatableResources.MilliCPU, allocatableResources.Memory,
 | 
						|
			totalResources.MilliCPU, totalResources.Memory,
 | 
						|
			cpuScore, memoryScore,
 | 
						|
		)
 | 
						|
	}
 | 
						|
 | 
						|
	return schedulerapi.HostPriority{
 | 
						|
		Host:  node.Name,
 | 
						|
		Score: int((cpuScore + memoryScore) / 2),
 | 
						|
	}, nil
 | 
						|
}
 | 
						|
 | 
						|
// LeastRequestedPriority is a priority function that favors nodes with fewer requested resources.
 | 
						|
// It calculates the percentage of memory and CPU requested by pods scheduled on the node, and prioritizes
 | 
						|
// based on the minimum of the average of the fraction of requested to capacity.
 | 
						|
// Details: cpu((capacity - sum(requested)) * 10 / capacity) + memory((capacity - sum(requested)) * 10 / capacity) / 2
 | 
						|
func LeastRequestedPriorityMap(pod *api.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	var nonZeroRequest *schedulercache.Resource
 | 
						|
	if priorityMeta, ok := meta.(*priorityMetadata); ok {
 | 
						|
		nonZeroRequest = priorityMeta.nonZeroRequest
 | 
						|
	} else {
 | 
						|
		// We couldn't parse metadata - fallback to computing it.
 | 
						|
		nonZeroRequest = getNonZeroRequests(pod)
 | 
						|
	}
 | 
						|
	return calculateUnusedPriority(pod, nonZeroRequest, nodeInfo)
 | 
						|
}
 | 
						|
 | 
						|
// MostRequestedPriority is a priority function that favors nodes with most requested resources.
 | 
						|
// It calculates the percentage of memory and CPU requested by pods scheduled on the node, and prioritizes
 | 
						|
// based on the maximum of the average of the fraction of requested to capacity.
 | 
						|
// Details: (cpu(10 * sum(requested) / capacity) + memory(10 * sum(requested) / capacity)) / 2
 | 
						|
func MostRequestedPriorityMap(pod *api.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	var nonZeroRequest *schedulercache.Resource
 | 
						|
	if priorityMeta, ok := meta.(*priorityMetadata); ok {
 | 
						|
		nonZeroRequest = priorityMeta.nonZeroRequest
 | 
						|
	} else {
 | 
						|
		// We couldn't parse metadatat - fallback to computing it.
 | 
						|
		nonZeroRequest = getNonZeroRequests(pod)
 | 
						|
	}
 | 
						|
	return calculateUsedPriority(pod, nonZeroRequest, nodeInfo)
 | 
						|
}
 | 
						|
 | 
						|
type NodeLabelPrioritizer struct {
 | 
						|
	label    string
 | 
						|
	presence bool
 | 
						|
}
 | 
						|
 | 
						|
func NewNodeLabelPriority(label string, presence bool) (algorithm.PriorityMapFunction, algorithm.PriorityReduceFunction) {
 | 
						|
	labelPrioritizer := &NodeLabelPrioritizer{
 | 
						|
		label:    label,
 | 
						|
		presence: presence,
 | 
						|
	}
 | 
						|
	return labelPrioritizer.CalculateNodeLabelPriorityMap, nil
 | 
						|
}
 | 
						|
 | 
						|
// CalculateNodeLabelPriority checks whether a particular label exists on a node or not, regardless of its value.
 | 
						|
// If presence is true, prioritizes nodes that have the specified label, regardless of value.
 | 
						|
// If presence is false, prioritizes nodes that do not have the specified label.
 | 
						|
func (n *NodeLabelPrioritizer) CalculateNodeLabelPriorityMap(pod *api.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	node := nodeInfo.Node()
 | 
						|
	if node == nil {
 | 
						|
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
 | 
						|
	}
 | 
						|
 | 
						|
	exists := labels.Set(node.Labels).Has(n.label)
 | 
						|
	score := 0
 | 
						|
	if (exists && n.presence) || (!exists && !n.presence) {
 | 
						|
		score = 10
 | 
						|
	}
 | 
						|
	return schedulerapi.HostPriority{
 | 
						|
		Host:  node.Name,
 | 
						|
		Score: score,
 | 
						|
	}, nil
 | 
						|
}
 | 
						|
 | 
						|
// This is a reasonable size range of all container images. 90%ile of images on dockerhub drops into this range.
 | 
						|
const (
 | 
						|
	mb         int64 = 1024 * 1024
 | 
						|
	minImgSize int64 = 23 * mb
 | 
						|
	maxImgSize int64 = 1000 * mb
 | 
						|
)
 | 
						|
 | 
						|
// ImageLocalityPriority is a priority function that favors nodes that already have requested pod container's images.
 | 
						|
// It will detect whether the requested images are present on a node, and then calculate a score ranging from 0 to 10
 | 
						|
// based on the total size of those images.
 | 
						|
// - If none of the images are present, this node will be given the lowest priority.
 | 
						|
// - If some of the images are present on a node, the larger their sizes' sum, the higher the node's priority.
 | 
						|
func ImageLocalityPriorityMap(pod *api.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	node := nodeInfo.Node()
 | 
						|
	if node == nil {
 | 
						|
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
 | 
						|
	}
 | 
						|
 | 
						|
	var sumSize int64
 | 
						|
	for i := range pod.Spec.Containers {
 | 
						|
		sumSize += checkContainerImageOnNode(node, &pod.Spec.Containers[i])
 | 
						|
	}
 | 
						|
	return schedulerapi.HostPriority{
 | 
						|
		Host:  node.Name,
 | 
						|
		Score: calculateScoreFromSize(sumSize),
 | 
						|
	}, nil
 | 
						|
}
 | 
						|
 | 
						|
// checkContainerImageOnNode checks if a container image is present on a node and returns its size.
 | 
						|
func checkContainerImageOnNode(node *api.Node, container *api.Container) int64 {
 | 
						|
	for _, image := range node.Status.Images {
 | 
						|
		for _, name := range image.Names {
 | 
						|
			if container.Image == name {
 | 
						|
				// Should return immediately.
 | 
						|
				return image.SizeBytes
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
// calculateScoreFromSize calculates the priority of a node. sumSize is sum size of requested images on this node.
 | 
						|
// 1. Split image size range into 10 buckets.
 | 
						|
// 2. Decide the priority of a given sumSize based on which bucket it belongs to.
 | 
						|
func calculateScoreFromSize(sumSize int64) int {
 | 
						|
	var score int
 | 
						|
	switch {
 | 
						|
	case sumSize == 0 || sumSize < minImgSize:
 | 
						|
		// score == 0 means none of the images required by this pod are present on this
 | 
						|
		// node or the total size of the images present is too small to be taken into further consideration.
 | 
						|
		score = 0
 | 
						|
	// If existing images' total size is larger than max, just make it highest priority.
 | 
						|
	case sumSize >= maxImgSize:
 | 
						|
		score = 10
 | 
						|
	default:
 | 
						|
		score = int((10 * (sumSize - minImgSize) / (maxImgSize - minImgSize)) + 1)
 | 
						|
	}
 | 
						|
	// Return which bucket the given size belongs to
 | 
						|
	return score
 | 
						|
}
 | 
						|
 | 
						|
// BalancedResourceAllocation favors nodes with balanced resource usage rate.
 | 
						|
// BalancedResourceAllocation should **NOT** be used alone, and **MUST** be used together with LeastRequestedPriority.
 | 
						|
// It calculates the difference between the cpu and memory fracion of capacity, and prioritizes the host based on how
 | 
						|
// close the two metrics are to each other.
 | 
						|
// Detail: score = 10 - abs(cpuFraction-memoryFraction)*10. The algorithm is partly inspired by:
 | 
						|
// "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced Resource Utilization"
 | 
						|
func BalancedResourceAllocationMap(pod *api.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	var nonZeroRequest *schedulercache.Resource
 | 
						|
	if priorityMeta, ok := meta.(*priorityMetadata); ok {
 | 
						|
		nonZeroRequest = priorityMeta.nonZeroRequest
 | 
						|
	} else {
 | 
						|
		// We couldn't parse metadatat - fallback to computing it.
 | 
						|
		nonZeroRequest = getNonZeroRequests(pod)
 | 
						|
	}
 | 
						|
	return calculateBalancedResourceAllocation(pod, nonZeroRequest, nodeInfo)
 | 
						|
}
 | 
						|
 | 
						|
func calculateBalancedResourceAllocation(pod *api.Pod, podRequests *schedulercache.Resource, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	node := nodeInfo.Node()
 | 
						|
	if node == nil {
 | 
						|
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
 | 
						|
	}
 | 
						|
 | 
						|
	allocatableResources := nodeInfo.AllocatableResource()
 | 
						|
	totalResources := *podRequests
 | 
						|
	totalResources.MilliCPU += nodeInfo.NonZeroRequest().MilliCPU
 | 
						|
	totalResources.Memory += nodeInfo.NonZeroRequest().Memory
 | 
						|
 | 
						|
	cpuFraction := fractionOfCapacity(totalResources.MilliCPU, allocatableResources.MilliCPU)
 | 
						|
	memoryFraction := fractionOfCapacity(totalResources.Memory, allocatableResources.Memory)
 | 
						|
	score := int(0)
 | 
						|
	if cpuFraction >= 1 || memoryFraction >= 1 {
 | 
						|
		// if requested >= capacity, the corresponding host should never be preferred.
 | 
						|
		score = 0
 | 
						|
	} else {
 | 
						|
		// Upper and lower boundary of difference between cpuFraction and memoryFraction are -1 and 1
 | 
						|
		// respectively. Multilying the absolute value of the difference by 10 scales the value to
 | 
						|
		// 0-10 with 0 representing well balanced allocation and 10 poorly balanced. Subtracting it from
 | 
						|
		// 10 leads to the score which also scales from 0 to 10 while 10 representing well balanced.
 | 
						|
		diff := math.Abs(cpuFraction - memoryFraction)
 | 
						|
		score = int(10 - diff*10)
 | 
						|
	}
 | 
						|
	if glog.V(10) {
 | 
						|
		// We explicitly don't do glog.V(10).Infof() to avoid computing all the parameters if this is
 | 
						|
		// not logged. There is visible performance gain from it.
 | 
						|
		glog.V(10).Infof(
 | 
						|
			"%v -> %v: Balanced Resource Allocation, capacity %d millicores %d memory bytes, total request %d millicores %d memory bytes, score %d",
 | 
						|
			pod.Name, node.Name,
 | 
						|
			allocatableResources.MilliCPU, allocatableResources.Memory,
 | 
						|
			totalResources.MilliCPU, totalResources.Memory,
 | 
						|
			score,
 | 
						|
		)
 | 
						|
	}
 | 
						|
 | 
						|
	return schedulerapi.HostPriority{
 | 
						|
		Host:  node.Name,
 | 
						|
		Score: score,
 | 
						|
	}, nil
 | 
						|
}
 | 
						|
 | 
						|
func fractionOfCapacity(requested, capacity int64) float64 {
 | 
						|
	if capacity == 0 {
 | 
						|
		return 1
 | 
						|
	}
 | 
						|
	return float64(requested) / float64(capacity)
 | 
						|
}
 | 
						|
 | 
						|
func CalculateNodePreferAvoidPodsPriorityMap(pod *api.Pod, meta interface{}, nodeInfo *schedulercache.NodeInfo) (schedulerapi.HostPriority, error) {
 | 
						|
	node := nodeInfo.Node()
 | 
						|
	if node == nil {
 | 
						|
		return schedulerapi.HostPriority{}, fmt.Errorf("node not found")
 | 
						|
	}
 | 
						|
 | 
						|
	controllerRef := priorityutil.GetControllerRef(pod)
 | 
						|
	if controllerRef != nil {
 | 
						|
		// Ignore pods that are owned by other controller than ReplicationController
 | 
						|
		// or ReplicaSet.
 | 
						|
		if controllerRef.Kind != "ReplicationController" && controllerRef.Kind != "ReplicaSet" {
 | 
						|
			controllerRef = nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if controllerRef == nil {
 | 
						|
		return schedulerapi.HostPriority{Host: node.Name, Score: 10}, nil
 | 
						|
	}
 | 
						|
 | 
						|
	avoids, err := api.GetAvoidPodsFromNodeAnnotations(node.Annotations)
 | 
						|
	if err != nil {
 | 
						|
		// If we cannot get annotation, assume it's schedulable there.
 | 
						|
		return schedulerapi.HostPriority{Host: node.Name, Score: 10}, nil
 | 
						|
	}
 | 
						|
	for i := range avoids.PreferAvoidPods {
 | 
						|
		avoid := &avoids.PreferAvoidPods[i]
 | 
						|
		if controllerRef != nil {
 | 
						|
			if avoid.PodSignature.PodController.Kind == controllerRef.Kind && avoid.PodSignature.PodController.UID == controllerRef.UID {
 | 
						|
				return schedulerapi.HostPriority{Host: node.Name, Score: 0}, nil
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return schedulerapi.HostPriority{Host: node.Name, Score: 10}, nil
 | 
						|
}
 |