keras-autoencoder.py: TensorBoard, SGD optimizer, KLDivergence loss function, EarlyStopping

Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
Toni Uhlig
2023-08-23 22:56:59 +02:00
parent 86ac09a8db
commit 5234f4621b

View File

@@ -4,7 +4,7 @@ import base64
import binascii
import datetime as dt
import math
import matplotlib.animation as animation
import matplotlib.animation as ani
import matplotlib.pyplot as plt
import multiprocessing as mp
import numpy as np
@@ -17,7 +17,9 @@ from tensorflow.keras import models, layers, preprocessing
from tensorflow.keras.layers import Embedding, Masking, Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.utils import plot_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import MeanSquaredError, KLDivergence
from tensorflow.keras.optimizers import Adam, SGD
from tensorflow.keras.callbacks import TensorBoard, EarlyStopping
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
@@ -28,11 +30,17 @@ from nDPIsrvd import nDPIsrvdSocket, TermColor
INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
LATENT_SIZE = 16
TRAINING_SIZE = 1024
TRAINING_SIZE = 8192
EPOCH_COUNT = 50
BATCH_SIZE = 256
BATCH_SIZE = 512
LEARNING_RATE = 0.0000001
ES_PATIENCE = 10
PLOT = False
PLOT_HISTORY = 100
TENSORBOARD = False
TB_LOGPATH = 'logs/' + dt.datetime.now().strftime("%Y%m%d-%H%M%S")
VAE_USE_KLDIV = False
VAE_USE_SGD = False
def generate_autoencoder():
# TODO: The current model does handle *each* packet separatly.
@@ -62,11 +70,13 @@ def generate_autoencoder():
encoder = Model(input_e, latent, name='encoder')
decoder = Model(input_l, output_i, name='decoder')
return Adam(learning_rate=LEARNING_RATE), Model(input_e, decoder(encoder(input_e)), name='VAE')
return KLDivergence() if VAE_USE_KLDIV else MeanSquaredError(), \
SGD() if VAE_USE_SGD else Adam(learning_rate=LEARNING_RATE), \
Model(input_e, decoder(encoder(input_e)), name='VAE')
def compile_autoencoder():
optimizer, autoencoder = generate_autoencoder()
autoencoder.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[])
loss, optimizer, autoencoder = generate_autoencoder()
autoencoder.compile(loss=loss, optimizer=optimizer, metrics=[])
return autoencoder
def get_autoencoder(load_from_file=None):
@@ -87,7 +97,7 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
json_dict['packet_event_name'] != 'packet-flow':
return True
shutdown_event, training_event, padded_pkts = global_user_data
shutdown_event, training_event, padded_pkts, print_dots = global_user_data
if shutdown_event.is_set():
return False
@@ -120,8 +130,11 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
#print(list(buf[0]))
if not training_event.is_set():
sys.stdout.write('.')
sys.stdout.write('.' * print_dots)
sys.stdout.flush()
print_dots = 1
else:
print_dots += 1
return True
@@ -130,8 +143,8 @@ def nDPIsrvd_worker(address, shared_shutdown_event, shared_training_event, share
try:
nsock.connect(address)
padded_pkts = list()
nsock.loop(onJsonLineRecvd, None, (shared_shutdown_event, shared_training_event, shared_packet_list))
print_dots = 1
nsock.loop(onJsonLineRecvd, None, (shared_shutdown_event, shared_training_event, shared_packet_list, print_dots))
except nDPIsrvd.SocketConnectionBroken as err:
sys.stderr.write('\nnDPIsrvd-Worker Socket Error: {}\n'.format(err))
except KeyboardInterrupt:
@@ -151,6 +164,8 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
sys.stderr.flush()
encoder, decoder, autoencoder = get_autoencoder()
autoencoder.summary()
tensorboard = TensorBoard(log_dir=TB_LOGPATH, histogram_freq=1)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=ES_PATIENCE, restore_best_weights=True, start_from_epoch=0, verbose=0, mode='auto')
shared_training_event.clear()
try:
@@ -172,14 +187,15 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
history = autoencoder.fit(
tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
validation_split=0.2,
shuffle=True
shuffle=True,
callbacks=[tensorboard, early_stopping]
)
reconstructed_data = autoencoder.predict(tmp)
mse = np.mean(np.square(tmp - reconstructed_data))
reconstruction_accuracy = (1.0 / mse)
encoded_data = encoder.predict(tmp)
latent_activations = encoder.predict(tmp)
shared_plot_queue.put((reconstruction_accuracy, history.history['loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
shared_plot_queue.put((reconstruction_accuracy, history.history['val_loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
packets.clear()
shared_training_event.clear()
except KeyboardInterrupt:
@@ -234,7 +250,7 @@ def plot_animate(i, shared_plot_queue, ax, xs, ys):
ax1.set_xlabel('Epoch Count')
ax1.set_ylabel('Accuracy')
ax2.set_xlabel('Epoch Count')
ax2.set_ylabel('Loss')
ax2.set_ylabel('Validation Loss')
ax3.set_title('Latent Space')
ax4.set_title('Latent Space Heatmap')
ax4.set_xlabel('Latent Dimensions')
@@ -247,7 +263,7 @@ def plot_worker(shared_shutdown_event, shared_plot_queue):
ax1.set_xlabel('Epoch Count')
ax1.set_ylabel('Accuracy')
ax2.set_xlabel('Epoch Count')
ax2.set_ylabel('Loss')
ax2.set_ylabel('Validation Loss')
ax3.set_title('Latent Space')
ax4.set_title('Latent Space Heatmap')
ax4.set_xlabel('Latent Dimensions')
@@ -258,8 +274,9 @@ def plot_worker(shared_shutdown_event, shared_plot_queue):
ys3 = []
ys4 = []
x = 0
ani = animation.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
a = ani.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
plt.margins(x=0, y=0)
plt.show()
except Exception as err:
sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err)))
@@ -279,29 +296,43 @@ if __name__ == '__main__':
help='Load a pre-trained model file.')
argparser.add_argument('--save-model', action='store',
help='Save the trained model to a file.')
argparser.add_argument('--training-size', action='store', type=int,
argparser.add_argument('--training-size', action='store', default=TRAINING_SIZE,
help='Set the amount of captured packets required to start the training phase.')
argparser.add_argument('--batch-size', action='store', type=int,
argparser.add_argument('--batch-size', action='store', default=BATCH_SIZE,
help='Set the batch size used for the training phase.')
argparser.add_argument('--learning-rate', action='store', type=float,
help='Set the (initial!) learning rate for the Adam optimizer.')
argparser.add_argument('--plot', action='store_true', default=False,
argparser.add_argument('--learning-rate', action='store', default=LEARNING_RATE,
help='Set the (initial) learning rate for the optimizer.')
argparser.add_argument('--plot', action='store_true', default=PLOT,
help='Show some model metrics using pyplot.')
argparser.add_argument('--plot-history', action='store', type=int,
argparser.add_argument('--plot-history', action='store', default=PLOT_HISTORY,
help='Set the history size of Line plots. Requires --plot')
argparser.add_argument('--tensorboard', action='store_true', default=TENSORBOARD,
help='Enable TensorBoard compatible logging callback.')
argparser.add_argument('--tensorboard-logpath', action='store', default=TB_LOGPATH,
help='TensorBoard logging path.')
argparser.add_argument('--use-sgd', action='store_true', default=VAE_USE_SGD,
help='Use SGD optimizer instead of Adam.')
argparser.add_argument('--use-kldiv', action='store_true', default=VAE_USE_KLDIV,
help='Use Kullback-Leibler loss function instead of Mean-Squared-Error.')
argparser.add_argument('--patience', action='store', default=ES_PATIENCE,
help='Epoch value for EarlyStopping. This value forces VAE fitting to if no improvment achieved.')
args = argparser.parse_args()
address = nDPIsrvd.validateAddress(args)
LEARNING_RATE = args.learning_rate if args.learning_rate is not None else LEARNING_RATE
TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE
if args.plot is False and args.plot_history is not None:
raise RuntimeError('--plot-history requires --plot')
PLOT_HISTORY = args.plot_history if args.plot_history is not None else PLOT_HISTORY
LEARNING_RATE = args.learning_rate
TRAINING_SIZE = args.training_size
BATCH_SIZE = args.batch_size
PLOT = args.plot
PLOT_HISTORY = args.plot_history
TENSORBOARD = args.tensorboard
TB_LOGPATH = args.tensorboard_logpath if args.tensorboard_logpath is not None else TB_LOGPATH
VAE_USE_SGD = args.use_sgd
VAE_USE_KLDIV = args.use_kldiv
ES_PATIENCE = args.patience
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(args.plot, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(PLOT, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
mgr = mp.Manager()
@@ -332,7 +363,7 @@ if __name__ == '__main__':
))
keras_job.start()
if args.plot is True:
if PLOT is True:
plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue))
plot_job.start()
@@ -341,9 +372,10 @@ if __name__ == '__main__':
except KeyboardInterrupt:
print('\nShutting down worker processess..')
if args.plot is True:
if PLOT is True:
plot_job.terminate()
plot_job.join()
nDPIsrvd_job.terminate()
nDPIsrvd_job.join()
keras_job.join()
keras_job.join(timeout=3)
keras_job.terminate()