mirror of
https://github.com/optim-enterprises-bv/nDPId-2.git
synced 2025-11-02 19:27:52 +00:00
keras-autoencoder.py: Improved Model
* added initial learning rate for Adam * plot some metrics using pyplot Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
@@ -2,13 +2,23 @@
|
|||||||
|
|
||||||
import base64
|
import base64
|
||||||
import binascii
|
import binascii
|
||||||
import joblib
|
import datetime as dt
|
||||||
|
import math
|
||||||
|
import matplotlib.animation as animation
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
import queue
|
import queue
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras import models, layers, preprocessing
|
||||||
|
from tensorflow.keras.layers import Embedding, Masking, Input, Dense
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.utils import plot_model
|
||||||
|
from tensorflow.keras.optimizers import Adam
|
||||||
|
|
||||||
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
|
||||||
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
|
||||||
sys.path.append(os.path.dirname(sys.argv[0]))
|
sys.path.append(os.path.dirname(sys.argv[0]))
|
||||||
@@ -16,21 +26,29 @@ sys.path.append(sys.base_prefix + '/share/nDPId')
|
|||||||
import nDPIsrvd
|
import nDPIsrvd
|
||||||
from nDPIsrvd import nDPIsrvdSocket, TermColor
|
from nDPIsrvd import nDPIsrvdSocket, TermColor
|
||||||
|
|
||||||
INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
|
INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
|
||||||
LATENT_SIZE = 8
|
LATENT_SIZE = 16
|
||||||
TRAINING_SIZE = 500
|
TRAINING_SIZE = 1024
|
||||||
EPOCH_COUNT = 5
|
EPOCH_COUNT = 50
|
||||||
BATCH_SIZE = 10
|
BATCH_SIZE = 256
|
||||||
|
LEARNING_RATE = 0.0000001
|
||||||
|
PLOT_HISTORY = 100
|
||||||
|
|
||||||
def generate_autoencoder():
|
def generate_autoencoder():
|
||||||
|
# TODO: The current model does handle *each* packet separatly.
|
||||||
|
# But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other.
|
||||||
|
# The accuracy may (or may not) improve significantly, but some of changes in the code are required.
|
||||||
input_i = Input(shape=(), name='input_i')
|
input_i = Input(shape=(), name='input_i')
|
||||||
input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i)
|
input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i)
|
||||||
encoded_h1 = Dense(1024, activation='relu', name='encoded_h1')(input_e)
|
masked_e = Masking(mask_value=0.0, name='masked_e')(input_e)
|
||||||
encoded_h2 = Dense(512, activation='relu', name='encoded_h2')(encoded_h1)
|
encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e)
|
||||||
encoded_h3 = Dense(128, activation='relu', name='encoded_h3')(encoded_h2)
|
encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1)
|
||||||
encoded_h4 = Dense(64, activation='relu', name='encoded_h4')(encoded_h3)
|
encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2)
|
||||||
encoded_h5 = Dense(32, activation='relu', name='encoded_h5')(encoded_h4)
|
encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3)
|
||||||
latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h5)
|
encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4)
|
||||||
|
encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5)
|
||||||
|
encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6)
|
||||||
|
latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7)
|
||||||
|
|
||||||
input_l = Input(shape=(LATENT_SIZE), name='input_l')
|
input_l = Input(shape=(LATENT_SIZE), name='input_l')
|
||||||
decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l)
|
decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l)
|
||||||
@@ -38,16 +56,28 @@ def generate_autoencoder():
|
|||||||
decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2)
|
decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2)
|
||||||
decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3)
|
decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3)
|
||||||
decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4)
|
decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4)
|
||||||
output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h5)
|
decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5)
|
||||||
|
decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6)
|
||||||
|
output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7)
|
||||||
|
|
||||||
encoder = Model(input_e, latent, name='encoder')
|
encoder = Model(input_e, latent, name='encoder')
|
||||||
decoder = Model(input_l, output_i, name='decoder')
|
decoder = Model(input_l, output_i, name='decoder')
|
||||||
return encoder, decoder, Model(input_e, decoder(encoder(input_e)), name='VAE')
|
return Adam(learning_rate=LEARNING_RATE), Model(input_e, decoder(encoder(input_e)), name='VAE')
|
||||||
|
|
||||||
def compile_autoencoder():
|
def compile_autoencoder():
|
||||||
encoder, decoder, autoencoder = generate_autoencoder()
|
optimizer, autoencoder = generate_autoencoder()
|
||||||
autoencoder.compile(loss='mse', optimizer='adam', metrics=[tf.keras.metrics.Accuracy()])
|
autoencoder.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[])
|
||||||
return encoder, decoder, autoencoder
|
return autoencoder
|
||||||
|
|
||||||
|
def get_autoencoder(load_from_file=None):
|
||||||
|
if load_from_file is None:
|
||||||
|
autoencoder = compile_autoencoder()
|
||||||
|
else:
|
||||||
|
autoencoder = models.load_model(load_from_file)
|
||||||
|
|
||||||
|
encoder_submodel = autoencoder.layers[1]
|
||||||
|
decoder_submodel = autoencoder.layers[2]
|
||||||
|
return encoder_submodel, decoder_submodel, autoencoder
|
||||||
|
|
||||||
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
|
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
|
||||||
if 'packet_event_name' not in json_dict:
|
if 'packet_event_name' not in json_dict:
|
||||||
@@ -112,22 +142,14 @@ def nDPIsrvd_worker(address, shared_shutdown_event, shared_training_event, share
|
|||||||
|
|
||||||
shared_shutdown_event.set()
|
shared_shutdown_event.set()
|
||||||
|
|
||||||
def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue):
|
def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue):
|
||||||
shared_training_event.set()
|
shared_training_event.set()
|
||||||
if load_model is not None:
|
try:
|
||||||
sys.stderr.write('Loading model from {}\n'.format(load_model))
|
encoder, decoder, autoencoder = get_autoencoder(load_model)
|
||||||
|
except Exception as err:
|
||||||
|
sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err)))
|
||||||
sys.stderr.flush()
|
sys.stderr.flush()
|
||||||
try:
|
encoder, decoder, autoencoder = get_autoencoder()
|
||||||
encoder, decoder, autoencoder = joblib.load(load_model)
|
|
||||||
except:
|
|
||||||
sys.stderr.write('Could not load model from {}\n'.format(load_model))
|
|
||||||
sys.stderr.write('Compiling new Autoencoder..\n')
|
|
||||||
sys.stderr.flush()
|
|
||||||
encoder, decoder, autoencoder = compile_autoencoder()
|
|
||||||
else:
|
|
||||||
encoder, decoder, autoencoder = compile_autoencoder()
|
|
||||||
decoder.summary()
|
|
||||||
encoder.summary()
|
|
||||||
autoencoder.summary()
|
autoencoder.summary()
|
||||||
shared_training_event.clear()
|
shared_training_event.clear()
|
||||||
|
|
||||||
@@ -147,12 +169,17 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
|
|||||||
shared_training_event.set()
|
shared_training_event.set()
|
||||||
print('\nGot {} packets, training..'.format(len(packets)))
|
print('\nGot {} packets, training..'.format(len(packets)))
|
||||||
tmp = np.array(packets)
|
tmp = np.array(packets)
|
||||||
x_test_encoded = encoder.predict(tmp, batch_size=BATCH_SIZE)
|
|
||||||
history = autoencoder.fit(
|
history = autoencoder.fit(
|
||||||
tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
|
tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
|
||||||
validation_split=0.2,
|
validation_split=0.2,
|
||||||
shuffle=True
|
shuffle=True
|
||||||
)
|
)
|
||||||
|
reconstructed_data = autoencoder.predict(tmp)
|
||||||
|
mse = np.mean(np.square(tmp - reconstructed_data))
|
||||||
|
reconstruction_accuracy = (1.0 / mse)
|
||||||
|
encoded_data = encoder.predict(tmp)
|
||||||
|
latent_activations = encoder.predict(tmp)
|
||||||
|
shared_plot_queue.put((reconstruction_accuracy, history.history['loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
|
||||||
packets.clear()
|
packets.clear()
|
||||||
shared_training_event.clear()
|
shared_training_event.clear()
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
@@ -166,13 +193,80 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
|
|||||||
if save_model is not None:
|
if save_model is not None:
|
||||||
sys.stderr.write('Saving model to {}\n'.format(save_model))
|
sys.stderr.write('Saving model to {}\n'.format(save_model))
|
||||||
sys.stderr.flush()
|
sys.stderr.flush()
|
||||||
joblib.dump([encoder, decoder, autoencoder], save_model)
|
autoencoder.save(save_model)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
shared_shutdown_event.set()
|
shared_shutdown_event.set()
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def plot_animate(i, shared_plot_queue, ax, xs, ys):
|
||||||
|
if not shared_plot_queue.empty():
|
||||||
|
accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1)
|
||||||
|
epochs = len(loss)
|
||||||
|
loss_mean = sum(loss) / epochs
|
||||||
|
else:
|
||||||
|
return
|
||||||
|
|
||||||
|
(ax1, ax2, ax3, ax4) = ax
|
||||||
|
(ys1, ys2, ys3, ys4) = ys
|
||||||
|
|
||||||
|
if len(xs) == 0:
|
||||||
|
xs.append(epochs)
|
||||||
|
else:
|
||||||
|
xs.append(xs[-1] + epochs)
|
||||||
|
ys1.append(accuracy)
|
||||||
|
ys2.append(loss_mean)
|
||||||
|
|
||||||
|
xs = xs[-PLOT_HISTORY:]
|
||||||
|
ys1 = ys1[-PLOT_HISTORY:]
|
||||||
|
ys2 = ys2[-PLOT_HISTORY:]
|
||||||
|
|
||||||
|
ax1.clear()
|
||||||
|
ax1.plot(xs, ys1, '-')
|
||||||
|
ax2.clear()
|
||||||
|
ax2.plot(xs, ys2, '-')
|
||||||
|
ax3.clear()
|
||||||
|
ax3.scatter(encoded_data0, encoded_data1, marker='.')
|
||||||
|
ax4.clear()
|
||||||
|
ax4.imshow(latent_activations, cmap='viridis', aspect='auto')
|
||||||
|
|
||||||
|
ax1.set_xlabel('Epoch Count')
|
||||||
|
ax1.set_ylabel('Accuracy')
|
||||||
|
ax2.set_xlabel('Epoch Count')
|
||||||
|
ax2.set_ylabel('Loss')
|
||||||
|
ax3.set_title('Latent Space')
|
||||||
|
ax4.set_title('Latent Space Heatmap')
|
||||||
|
ax4.set_xlabel('Latent Dimensions')
|
||||||
|
ax4.set_ylabel('Datapoints')
|
||||||
|
|
||||||
|
def plot_worker(shared_shutdown_event, shared_plot_queue):
|
||||||
|
try:
|
||||||
|
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
|
||||||
|
fig.tight_layout()
|
||||||
|
ax1.set_xlabel('Epoch Count')
|
||||||
|
ax1.set_ylabel('Accuracy')
|
||||||
|
ax2.set_xlabel('Epoch Count')
|
||||||
|
ax2.set_ylabel('Loss')
|
||||||
|
ax3.set_title('Latent Space')
|
||||||
|
ax4.set_title('Latent Space Heatmap')
|
||||||
|
ax4.set_xlabel('Latent Dimensions')
|
||||||
|
ax4.set_ylabel('Datapoints')
|
||||||
|
xs = []
|
||||||
|
ys1 = []
|
||||||
|
ys2 = []
|
||||||
|
ys3 = []
|
||||||
|
ys4 = []
|
||||||
|
x = 0
|
||||||
|
ani = animation.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
|
||||||
|
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
||||||
|
plt.show()
|
||||||
|
except Exception as err:
|
||||||
|
sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err)))
|
||||||
|
sys.stderr.flush()
|
||||||
|
shared_shutdown_event.set()
|
||||||
|
return
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
sys.stderr.write('\b\n***************\n')
|
sys.stderr.write('\b\n***************\n')
|
||||||
sys.stderr.write('*** WARNING ***\n')
|
sys.stderr.write('*** WARNING ***\n')
|
||||||
@@ -189,21 +283,25 @@ if __name__ == '__main__':
|
|||||||
help='Set the amount of captured packets required to start the training phase.')
|
help='Set the amount of captured packets required to start the training phase.')
|
||||||
argparser.add_argument('--batch-size', action='store', type=int,
|
argparser.add_argument('--batch-size', action='store', type=int,
|
||||||
help='Set the batch size used for the training phase.')
|
help='Set the batch size used for the training phase.')
|
||||||
|
argparser.add_argument('--learning-rate', action='store', type=float,
|
||||||
|
help='Set the (initial!) learning rate for the Adam optimizer.')
|
||||||
|
argparser.add_argument('--plot', action='store_true', default=False,
|
||||||
|
help='Show some model metrics using pyplot.')
|
||||||
|
argparser.add_argument('--plot-history', action='store', type=int,
|
||||||
|
help='Set the history size of Line plots. Requires --plot')
|
||||||
args = argparser.parse_args()
|
args = argparser.parse_args()
|
||||||
address = nDPIsrvd.validateAddress(args)
|
address = nDPIsrvd.validateAddress(args)
|
||||||
|
|
||||||
|
LEARNING_RATE = args.learning_rate if args.learning_rate is not None else LEARNING_RATE
|
||||||
TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
|
TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
|
||||||
BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE
|
BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE
|
||||||
|
if args.plot is False and args.plot_history is not None:
|
||||||
|
raise RuntimeError('--plot-history requires --plot')
|
||||||
|
PLOT_HISTORY = args.plot_history if args.plot_history is not None else PLOT_HISTORY
|
||||||
|
|
||||||
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
|
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
|
||||||
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
|
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
|
||||||
sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE))
|
sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(args.plot, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
from tensorflow.keras import layers, preprocessing
|
|
||||||
from tensorflow.keras.layers import Embedding, Input, Dense
|
|
||||||
from tensorflow.keras.models import Model, Sequential
|
|
||||||
from tensorflow.keras.utils import plot_model
|
|
||||||
|
|
||||||
mgr = mp.Manager()
|
mgr = mp.Manager()
|
||||||
|
|
||||||
@@ -214,6 +312,7 @@ if __name__ == '__main__':
|
|||||||
shared_shutdown_event.clear()
|
shared_shutdown_event.clear()
|
||||||
|
|
||||||
shared_packet_queue = mgr.JoinableQueue()
|
shared_packet_queue = mgr.JoinableQueue()
|
||||||
|
shared_plot_queue = mgr.JoinableQueue()
|
||||||
|
|
||||||
nDPIsrvd_job = mp.Process(target=nDPIsrvd_worker, args=(
|
nDPIsrvd_job = mp.Process(target=nDPIsrvd_worker, args=(
|
||||||
address,
|
address,
|
||||||
@@ -228,15 +327,23 @@ if __name__ == '__main__':
|
|||||||
args.save_model,
|
args.save_model,
|
||||||
shared_shutdown_event,
|
shared_shutdown_event,
|
||||||
shared_training_event,
|
shared_training_event,
|
||||||
shared_packet_queue
|
shared_packet_queue,
|
||||||
|
shared_plot_queue
|
||||||
))
|
))
|
||||||
keras_job.start()
|
keras_job.start()
|
||||||
|
|
||||||
|
if args.plot is True:
|
||||||
|
plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue))
|
||||||
|
plot_job.start()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
shared_shutdown_event.wait()
|
shared_shutdown_event.wait()
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
print('\nShutting down worker processess..')
|
print('\nShutting down worker processess..')
|
||||||
|
|
||||||
|
if args.plot is True:
|
||||||
|
plot_job.terminate()
|
||||||
|
plot_job.join()
|
||||||
nDPIsrvd_job.terminate()
|
nDPIsrvd_job.terminate()
|
||||||
nDPIsrvd_job.join()
|
nDPIsrvd_job.join()
|
||||||
keras_job.join()
|
keras_job.join()
|
||||||
|
|||||||
Reference in New Issue
Block a user