mirror of
				https://github.com/optim-enterprises-bv/nDPId-2.git
				synced 2025-10-31 18:27:51 +00:00 
			
		
		
		
	Keras AE supports loading/saving models.
* added training/batch size as cmdargs Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
		| @@ -1,19 +1,14 @@ | ||||
| #!/usr/bin/env python3 | ||||
|  | ||||
| import base64 | ||||
| import joblib | ||||
| import csv | ||||
| import matplotlib.pyplot as plt | ||||
| import numpy as np | ||||
| import os | ||||
| import pandas as pd | ||||
| import tensorflow as tf | ||||
| import sys | ||||
|  | ||||
| from tensorflow.keras import layers, preprocessing | ||||
| from tensorflow.keras.layers import Embedding, Input, Dense | ||||
| from tensorflow.keras.models import Model, Sequential | ||||
| from tensorflow.keras.utils import plot_model | ||||
|  | ||||
| sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') | ||||
| sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId') | ||||
| sys.path.append(os.path.dirname(sys.argv[0])) | ||||
| @@ -21,13 +16,13 @@ sys.path.append(sys.base_prefix + '/share/nDPId') | ||||
| import nDPIsrvd | ||||
| from nDPIsrvd import nDPIsrvdSocket, TermColor | ||||
|  | ||||
| input_size = nDPIsrvd.nDPId_PACKETS_PLEN_MAX | ||||
| training_size = 500 | ||||
| batch_size = 100 | ||||
| INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX | ||||
| TRAINING_SIZE = 500 | ||||
| BATCH_SIZE = 10 | ||||
|  | ||||
| def generate_autoencoder(): | ||||
|     input_i = Input(shape=()) | ||||
|     input_i = Embedding(input_dim=input_size, output_dim=input_size, mask_zero=True)(input_i) | ||||
|     input_i = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True)(input_i) | ||||
|     encoded_h1 = Dense(1024, activation='relu', name='input_i')(input_i) | ||||
|     encoded_h2 = Dense(512, activation='relu', name='encoded_h1')(encoded_h1) | ||||
|     encoded_h3 = Dense(128, activation='relu', name='encoded_h2')(encoded_h2) | ||||
| @@ -39,7 +34,7 @@ def generate_autoencoder(): | ||||
|     decoder_h3 = Dense(128, activation='relu', name='decoder_h2')(decoder_h2) | ||||
|     decoder_h4 = Dense(512, activation='relu', name='decoder_h3')(decoder_h3) | ||||
|     decoder_h5 = Dense(1024, activation='relu', name='decoder_h4')(decoder_h4) | ||||
|     return input_i, Model(input_i, Dense(input_size, activation='sigmoid', name='decoder_h5')(decoder_h5)) | ||||
|     return input_i, Model(input_i, Dense(INPUT_SIZE, activation='sigmoid', name='decoder_h5')(decoder_h5)) | ||||
|  | ||||
| def compile_autoencoder(): | ||||
|     inp, autoencoder = generate_autoencoder() | ||||
| @@ -72,16 +67,16 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): | ||||
|     mat -= matmean | ||||
|  | ||||
|     # Pad resulting matrice | ||||
|     buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=input_size, truncating='post') | ||||
|     buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post') | ||||
|     padded_pkts.append(buf[0]) | ||||
|  | ||||
|     sys.stdout.write('.') | ||||
|     sys.stdout.flush() | ||||
|     if (len(padded_pkts) % training_size == 0): | ||||
|     if (len(padded_pkts) % TRAINING_SIZE == 0): | ||||
|         print('\nGot {} packets, training..'.format(len(padded_pkts))) | ||||
|         tmp = np.array(padded_pkts) | ||||
|         history = autoencoder.fit( | ||||
|                                   tmp, tmp, epochs=10, batch_size=batch_size, | ||||
|                                   tmp, tmp, epochs=10, batch_size=BATCH_SIZE, | ||||
|                                   validation_split=0.2, | ||||
|                                   shuffle=True | ||||
|                                  ) | ||||
| @@ -106,13 +101,36 @@ if __name__ == '__main__': | ||||
|     sys.stderr.write('Please do not rely on any of it\'s output!\n\n') | ||||
|  | ||||
|     argparser = nDPIsrvd.defaultArgumentParser() | ||||
|     argparser.add_argument('--load-model', action='store', | ||||
|                            help='Load a pre-trained model file.') | ||||
|     argparser.add_argument('--save-model', action='store', | ||||
|                            help='Save the trained model to a file.') | ||||
|     argparser.add_argument('--training-size', action='store', type=int, | ||||
|                            help='Set the amount of captured packets required to start the training phase.') | ||||
|     argparser.add_argument('--batch-size', action='store', type=int, | ||||
|                            help='Set the batch size used for the training phase.') | ||||
|     args = argparser.parse_args() | ||||
|     address = nDPIsrvd.validateAddress(args) | ||||
|  | ||||
|     TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE | ||||
|     BATCH_SIZE    = args.batch_size if args.batch_size is not None else BATCH_SIZE | ||||
|  | ||||
|     sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE)) | ||||
|     sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address)) | ||||
|     sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE)) | ||||
|  | ||||
|     _, autoencoder = compile_autoencoder() | ||||
|     import tensorflow as tf | ||||
|     from tensorflow.keras import layers, preprocessing | ||||
|     from tensorflow.keras.layers import Embedding, Input, Dense | ||||
|     from tensorflow.keras.models import Model, Sequential | ||||
|     from tensorflow.keras.utils import plot_model | ||||
|  | ||||
|     if args.load_model is not None: | ||||
|         sys.stderr.write('Loading model from {}\n'.format(args.load_model)) | ||||
|         autoencoder, options = joblib.load(args.load_model) | ||||
|     else: | ||||
|         _, autoencoder = compile_autoencoder() | ||||
|     autoencoder.summary() | ||||
|  | ||||
|     nsock = nDPIsrvdSocket() | ||||
|     nsock.connect(address) | ||||
| @@ -123,3 +141,7 @@ if __name__ == '__main__': | ||||
|         sys.stderr.write('\n{}\n'.format(err)) | ||||
|     except KeyboardInterrupt: | ||||
|         print() | ||||
|  | ||||
|     if args.save_model is not None: | ||||
|         sys.stderr.write('Saving model to {}\n'.format(args.save_model)) | ||||
|         joblib.dump([autoencoder, None], args.save_model) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Toni Uhlig
					Toni Uhlig