Keras AE supports loading/saving models.

* added training/batch size as cmdargs

Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
Toni Uhlig
2023-07-20 09:25:11 +02:00
parent c57ace2fd3
commit 8a8de12fb3

View File

@@ -1,19 +1,14 @@
#!/usr/bin/env python3
import base64
import joblib
import csv
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import tensorflow as tf
import sys
from tensorflow.keras import layers, preprocessing
from tensorflow.keras.layers import Embedding, Input, Dense
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.utils import plot_model
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
sys.path.append(os.path.dirname(sys.argv[0]))
@@ -21,13 +16,13 @@ sys.path.append(sys.base_prefix + '/share/nDPId')
import nDPIsrvd
from nDPIsrvd import nDPIsrvdSocket, TermColor
input_size = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
training_size = 500
batch_size = 100
INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
TRAINING_SIZE = 500
BATCH_SIZE = 10
def generate_autoencoder():
input_i = Input(shape=())
input_i = Embedding(input_dim=input_size, output_dim=input_size, mask_zero=True)(input_i)
input_i = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True)(input_i)
encoded_h1 = Dense(1024, activation='relu', name='input_i')(input_i)
encoded_h2 = Dense(512, activation='relu', name='encoded_h1')(encoded_h1)
encoded_h3 = Dense(128, activation='relu', name='encoded_h2')(encoded_h2)
@@ -39,7 +34,7 @@ def generate_autoencoder():
decoder_h3 = Dense(128, activation='relu', name='decoder_h2')(decoder_h2)
decoder_h4 = Dense(512, activation='relu', name='decoder_h3')(decoder_h3)
decoder_h5 = Dense(1024, activation='relu', name='decoder_h4')(decoder_h4)
return input_i, Model(input_i, Dense(input_size, activation='sigmoid', name='decoder_h5')(decoder_h5))
return input_i, Model(input_i, Dense(INPUT_SIZE, activation='sigmoid', name='decoder_h5')(decoder_h5))
def compile_autoencoder():
inp, autoencoder = generate_autoencoder()
@@ -72,16 +67,16 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
mat -= matmean
# Pad resulting matrice
buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=input_size, truncating='post')
buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post')
padded_pkts.append(buf[0])
sys.stdout.write('.')
sys.stdout.flush()
if (len(padded_pkts) % training_size == 0):
if (len(padded_pkts) % TRAINING_SIZE == 0):
print('\nGot {} packets, training..'.format(len(padded_pkts)))
tmp = np.array(padded_pkts)
history = autoencoder.fit(
tmp, tmp, epochs=10, batch_size=batch_size,
tmp, tmp, epochs=10, batch_size=BATCH_SIZE,
validation_split=0.2,
shuffle=True
)
@@ -106,13 +101,36 @@ if __name__ == '__main__':
sys.stderr.write('Please do not rely on any of it\'s output!\n\n')
argparser = nDPIsrvd.defaultArgumentParser()
argparser.add_argument('--load-model', action='store',
help='Load a pre-trained model file.')
argparser.add_argument('--save-model', action='store',
help='Save the trained model to a file.')
argparser.add_argument('--training-size', action='store', type=int,
help='Set the amount of captured packets required to start the training phase.')
argparser.add_argument('--batch-size', action='store', type=int,
help='Set the batch size used for the training phase.')
args = argparser.parse_args()
address = nDPIsrvd.validateAddress(args)
TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE))
_, autoencoder = compile_autoencoder()
import tensorflow as tf
from tensorflow.keras import layers, preprocessing
from tensorflow.keras.layers import Embedding, Input, Dense
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.utils import plot_model
if args.load_model is not None:
sys.stderr.write('Loading model from {}\n'.format(args.load_model))
autoencoder, options = joblib.load(args.load_model)
else:
_, autoencoder = compile_autoencoder()
autoencoder.summary()
nsock = nDPIsrvdSocket()
nsock.connect(address)
@@ -123,3 +141,7 @@ if __name__ == '__main__':
sys.stderr.write('\n{}\n'.format(err))
except KeyboardInterrupt:
print()
if args.save_model is not None:
sys.stderr.write('Saving model to {}\n'.format(args.save_model))
joblib.dump([autoencoder, None], args.save_model)