mirror of
				https://github.com/optim-enterprises-bv/nDPId-2.git
				synced 2025-10-31 18:27:51 +00:00 
			
		
		
		
	Added Keras based Autoencode (Work-in-Progress!)
* minor fixes Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
		
							
								
								
									
										125
									
								
								examples/py-machine-learning/keras-autoencoder.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										125
									
								
								examples/py-machine-learning/keras-autoencoder.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,125 @@ | ||||
| #!/usr/bin/env python3 | ||||
|  | ||||
| import base64 | ||||
| import csv | ||||
| import matplotlib.pyplot as plt | ||||
| import numpy as np | ||||
| import os | ||||
| import pandas as pd | ||||
| import tensorflow as tf | ||||
| import sys | ||||
|  | ||||
| from tensorflow.keras import layers, preprocessing | ||||
| from tensorflow.keras.layers import Embedding, Input, Dense | ||||
| from tensorflow.keras.models import Model, Sequential | ||||
| from tensorflow.keras.utils import plot_model | ||||
|  | ||||
| sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies') | ||||
| sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId') | ||||
| sys.path.append(os.path.dirname(sys.argv[0])) | ||||
| sys.path.append(sys.base_prefix + '/share/nDPId') | ||||
| import nDPIsrvd | ||||
| from nDPIsrvd import nDPIsrvdSocket, TermColor | ||||
|  | ||||
| input_size = nDPIsrvd.nDPId_PACKETS_PLEN_MAX | ||||
| training_size = 500 | ||||
| batch_size = 100 | ||||
|  | ||||
| def generate_autoencoder(): | ||||
|     input_i = Input(shape=()) | ||||
|     input_i = Embedding(input_dim=input_size, output_dim=input_size, mask_zero=True)(input_i) | ||||
|     encoded_h1 = Dense(1024, activation='relu', name='input_i')(input_i) | ||||
|     encoded_h2 = Dense(512, activation='relu', name='encoded_h1')(encoded_h1) | ||||
|     encoded_h3 = Dense(128, activation='relu', name='encoded_h2')(encoded_h2) | ||||
|     encoded_h4 = Dense(64, activation='relu', name='encoded_h3')(encoded_h3) | ||||
|     encoded_h5 = Dense(32, activation='relu', name='encoded_h4')(encoded_h4) | ||||
|     latent = Dense(2, activation='relu', name='encoded_h5')(encoded_h5) | ||||
|     decoder_h1 = Dense(32, activation='relu', name='latent')(latent) | ||||
|     decoder_h2 = Dense(64, activation='relu', name='decoder_h1')(decoder_h1) | ||||
|     decoder_h3 = Dense(128, activation='relu', name='decoder_h2')(decoder_h2) | ||||
|     decoder_h4 = Dense(512, activation='relu', name='decoder_h3')(decoder_h3) | ||||
|     decoder_h5 = Dense(1024, activation='relu', name='decoder_h4')(decoder_h4) | ||||
|     return input_i, Model(input_i, Dense(input_size, activation='sigmoid', name='decoder_h5')(decoder_h5)) | ||||
|  | ||||
| def compile_autoencoder(): | ||||
|     inp, autoencoder = generate_autoencoder() | ||||
|     autoencoder.compile(loss='mse', optimizer='adam', metrics=[tf.keras.metrics.Accuracy()]) | ||||
|     return inp, autoencoder | ||||
|  | ||||
| def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data): | ||||
|     if 'packet_event_name' not in json_dict: | ||||
|         return True | ||||
|  | ||||
|     if json_dict['packet_event_name'] != 'packet' and \ | ||||
|         json_dict['packet_event_name'] != 'packet-flow': | ||||
|         return True | ||||
|  | ||||
|     _, padded_pkts = global_user_data | ||||
|     buf = base64.b64decode(json_dict['pkt'], validate=True) | ||||
|  | ||||
|     # Generate decimal byte buffer with valus from 0-255 | ||||
|     int_buf = [] | ||||
|     for v in buf: | ||||
|         int_buf.append(int(v)) | ||||
|  | ||||
|     mat = np.array([int_buf]) | ||||
|  | ||||
|     # Normalize the values | ||||
|     mat = mat.astype('float32') / 255. | ||||
|  | ||||
|     # Mean removal | ||||
|     matmean = np.mean(mat, axis=0) | ||||
|     mat -= matmean | ||||
|  | ||||
|     # Pad resulting matrice | ||||
|     buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=input_size, truncating='post') | ||||
|     padded_pkts.append(buf[0]) | ||||
|  | ||||
|     sys.stdout.write('.') | ||||
|     sys.stdout.flush() | ||||
|     if (len(padded_pkts) % training_size == 0): | ||||
|         print('\nGot {} packets, training..'.format(len(padded_pkts))) | ||||
|         tmp = np.array(padded_pkts) | ||||
|         history = autoencoder.fit( | ||||
|                                   tmp, tmp, epochs=10, batch_size=batch_size, | ||||
|                                   validation_split=0.2, | ||||
|                                   shuffle=True | ||||
|                                  ) | ||||
|         padded_pkts.clear() | ||||
|  | ||||
|         #plot_model(autoencoder, show_shapes=True, show_layer_names=True) | ||||
|         #plt.plot(history.history['loss']) | ||||
|         #plt.plot(history.history['val_loss']) | ||||
|         #plt.title('model loss') | ||||
|         #plt.xlabel('loss') | ||||
|         #plt.ylabel('val_loss') | ||||
|         #plt.legend(['loss', 'val_loss'], loc='upper left') | ||||
|         #plt.show() | ||||
|  | ||||
|     return True | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     sys.stderr.write('\b\n***************\n') | ||||
|     sys.stderr.write('*** WARNING ***\n') | ||||
|     sys.stderr.write('***************\n') | ||||
|     sys.stderr.write('\nThis is an unmature Autoencoder example.\n') | ||||
|     sys.stderr.write('Please do not rely on any of it\'s output!\n\n') | ||||
|  | ||||
|     argparser = nDPIsrvd.defaultArgumentParser() | ||||
|     args = argparser.parse_args() | ||||
|     address = nDPIsrvd.validateAddress(args) | ||||
|  | ||||
|     sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE)) | ||||
|     sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address)) | ||||
|  | ||||
|     _, autoencoder = compile_autoencoder() | ||||
|  | ||||
|     nsock = nDPIsrvdSocket() | ||||
|     nsock.connect(address) | ||||
|     try: | ||||
|         padded_pkts = list() | ||||
|         nsock.loop(onJsonLineRecvd, None, (autoencoder, padded_pkts)) | ||||
|     except nDPIsrvd.SocketConnectionBroken as err: | ||||
|         sys.stderr.write('\n{}\n'.format(err)) | ||||
|     except KeyboardInterrupt: | ||||
|         print() | ||||
		Reference in New Issue
	
	Block a user
	 Toni Uhlig
					Toni Uhlig