mirror of
https://github.com/optim-enterprises-bv/nDPId-2.git
synced 2025-11-09 08:06:20 +00:00
* c-analysed: fixed quoting bug * nDPId: fixed invalid iat storing/serialisation * nDPId: free data analysis after event was sent Signed-off-by: Toni Uhlig <matzeton@googlemail.com> Signed-off-by: lns <matzeton@googlemail.com>
142 lines
5.7 KiB
Python
Executable File
142 lines
5.7 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import csv
|
|
import numpy
|
|
import os
|
|
import sklearn
|
|
import sklearn.ensemble
|
|
import sys
|
|
|
|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
|
|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
|
|
sys.path.append(os.path.dirname(sys.argv[0]))
|
|
sys.path.append(sys.base_prefix + '/share/nDPId')
|
|
import nDPIsrvd
|
|
from nDPIsrvd import nDPIsrvdSocket, TermColor
|
|
|
|
|
|
N_DIRS = 0
|
|
N_BINS = 0
|
|
|
|
ENABLE_FEATURE_IAT = True
|
|
ENABLE_FEATURE_PKTLEN = True
|
|
ENABLE_FEATURE_DIRS = True
|
|
ENABLE_FEATURE_BINS = True
|
|
|
|
def getFeatures(json):
|
|
return [json['flow_src_packets_processed'],
|
|
json['flow_dst_packets_processed'],
|
|
json['flow_src_tot_l4_payload_len'],
|
|
json['flow_dst_tot_l4_payload_len']]
|
|
|
|
def getFeaturesFromArray(json, expected_len=0):
|
|
if type(json) is str:
|
|
dirs = numpy.fromstring(json, sep=',', dtype=int)
|
|
dirs = numpy.asarray(dirs, dtype=int).tolist()
|
|
elif type(json) is list:
|
|
dirs = json
|
|
else:
|
|
raise TypeError('Invalid type: {}.'.format(type(json)))
|
|
|
|
if expected_len > 0 and len(dirs) != expected_len:
|
|
raise RuntimeError('Invalid array length; Expected {}, Got {}.'.format(expected_len, len(dirs)))
|
|
|
|
return dirs
|
|
|
|
def getRelevantFeaturesCSV(line):
|
|
return [
|
|
getFeatures(line) + \
|
|
getFeaturesFromArray(line['iat_data'], N_DIRS - 1) if ENABLE_FEATURE_IAT is True else [] + \
|
|
getFeaturesFromArray(line['pktlen_data'], N_DIRS) if ENABLE_FEATURE_PKTLEN is True else [] + \
|
|
getFeaturesFromArray(line['directions'], N_DIRS) if ENABLE_FEATURE_DIRS is True else [] + \
|
|
getFeaturesFromArray(line['bins_c_to_s'], N_BINS) if ENABLE_FEATURE_BINS is True else [] + \
|
|
getFeaturesFromArray(line['bins_s_to_c'], N_BINS) if ENABLE_FEATURE_BINS is True else [] + \
|
|
[]
|
|
]
|
|
|
|
def getRelevantFeaturesJSON(line):
|
|
return [
|
|
getFeatures(line) + \
|
|
getFeaturesFromArray(line['data_analysis']['iat']['data'], N_DIRS - 1) if ENABLE_FEATURE_IAT is True else [] + \
|
|
getFeaturesFromArray(line['data_analysis']['pktlen']['data'], N_DIRS) if ENABLE_FEATURE_PKTLEN is True else [] + \
|
|
getFeaturesFromArray(line['data_analysis']['directions'], N_DIRS) if ENABLE_FEATURE_DIRS is True else [] + \
|
|
getFeaturesFromArray(line['data_analysis']['bins']['c_to_s'], N_BINS) if ENABLE_FEATURE_BINS is True else [] + \
|
|
getFeaturesFromArray(line['data_analysis']['bins']['s_to_c'], N_BINS) if ENABLE_FEATURE_BINS is True else [] + \
|
|
[]
|
|
]
|
|
|
|
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
|
|
if 'flow_event_name' not in json_dict:
|
|
return True
|
|
if json_dict['flow_event_name'] != 'analyse':
|
|
return True
|
|
|
|
if 'ndpi' not in json_dict:
|
|
return True
|
|
if 'proto' not in json_dict['ndpi']:
|
|
return True
|
|
|
|
#print(json_dict)
|
|
|
|
model, = global_user_data
|
|
|
|
try:
|
|
print('DPI Engine detected: "{}", Prediction: "{}"'.format(
|
|
json_dict['ndpi']['proto'], model.predict(getRelevantFeaturesJSON(json_dict))))
|
|
except Exception as err:
|
|
print('Got exception `{}\'\nfor json: {}'.format(err, json_dict))
|
|
|
|
return True
|
|
|
|
|
|
if __name__ == '__main__':
|
|
argparser = nDPIsrvd.defaultArgumentParser()
|
|
argparser.add_argument('--csv', action='store', required=True,
|
|
help='Input CSV file generated with nDPIsrvd-analysed.')
|
|
argparser.add_argument('--proto-class', action='store', required=True,
|
|
help='nDPId protocol class of interest, used for training and prediction. Example: tls.youtube')
|
|
argparser.add_argument('--enable-iat', action='store', default=True,
|
|
help='Use packet (I)nter (A)rrival (T)ime for learning and prediction.')
|
|
argparser.add_argument('--enable-pktlen', action='store', default=False,
|
|
help='Use layer 4 packet lengths for learning and prediction.')
|
|
argparser.add_argument('--enable-dirs', action='store', default=True,
|
|
help='Use packet directions for learning and prediction.')
|
|
argparser.add_argument('--enable-bins', action='store', default=True,
|
|
help='Use packet length distribution for learning and prediction.')
|
|
args = argparser.parse_args()
|
|
address = nDPIsrvd.validateAddress(args)
|
|
|
|
ENABLE_FEATURE_IAT = args.enable_iat
|
|
ENABLE_FEATURE_PKTLEN = args.enable_pktlen
|
|
ENABLE_FEATURE_DIRS = args.enable_dirs
|
|
ENABLE_FEATURE_BINS = args.enable_bins
|
|
|
|
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
|
|
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
|
|
|
|
sys.stderr.write('Learning via CSV..\n')
|
|
with open(args.csv, newline='\n') as csvfile:
|
|
reader = csv.DictReader(csvfile, delimiter=',', quotechar='"')
|
|
X = list()
|
|
y = list()
|
|
|
|
for line in reader:
|
|
N_DIRS = len(getFeaturesFromArray(line['directions']))
|
|
N_BINS = len(getFeaturesFromArray(line['bins_c_to_s']))
|
|
break
|
|
|
|
for line in reader:
|
|
try:
|
|
X += getRelevantFeaturesCSV(line)
|
|
y += [1 if line['proto'].lower().startswith(args.proto_class) is True else 0]
|
|
except RuntimeError as err:
|
|
print('Error: `{}\'\non line: {}'.format(err, line))
|
|
|
|
model = sklearn.ensemble.RandomForestClassifier()
|
|
model.fit(X, y)
|
|
|
|
sys.stderr.write('Predicting realtime traffic..\n')
|
|
nsock = nDPIsrvdSocket()
|
|
nsock.connect(address)
|
|
nsock.loop(onJsonLineRecvd, None, (model,))
|