mirror of
				https://github.com/optim-enterprises-bv/nDPId-2.git
				synced 2025-11-04 12:17:53 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			293 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import csv
 | 
						|
import joblib
 | 
						|
import matplotlib.pyplot
 | 
						|
import numpy
 | 
						|
import os
 | 
						|
import pandas
 | 
						|
import sklearn
 | 
						|
import sklearn.ensemble
 | 
						|
import sklearn.inspection
 | 
						|
import sys
 | 
						|
import time
 | 
						|
 | 
						|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
 | 
						|
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
 | 
						|
sys.path.append(os.path.dirname(sys.argv[0]))
 | 
						|
sys.path.append(sys.base_prefix + '/share/nDPId')
 | 
						|
import nDPIsrvd
 | 
						|
from nDPIsrvd import nDPIsrvdSocket, TermColor
 | 
						|
 | 
						|
 | 
						|
N_DIRS = 0
 | 
						|
N_BINS = 0
 | 
						|
 | 
						|
ENABLE_FEATURE_IAT    = False
 | 
						|
ENABLE_FEATURE_PKTLEN = False
 | 
						|
ENABLE_FEATURE_DIRS   = True
 | 
						|
ENABLE_FEATURE_BINS   = True
 | 
						|
 | 
						|
def getFeatures(json):
 | 
						|
    return [json['flow_src_packets_processed'],
 | 
						|
            json['flow_dst_packets_processed'],
 | 
						|
            json['flow_src_tot_l4_payload_len'],
 | 
						|
            json['flow_dst_tot_l4_payload_len']]
 | 
						|
 | 
						|
def getFeaturesFromArray(json, expected_len=0):
 | 
						|
    if type(json) is str:
 | 
						|
        dirs = numpy.fromstring(json, sep=',', dtype=int)
 | 
						|
        dirs = numpy.asarray(dirs, dtype=int).tolist()
 | 
						|
    elif type(json) is list:
 | 
						|
        dirs = json
 | 
						|
    else:
 | 
						|
        raise TypeError('Invalid type: {}.'.format(type(json)))
 | 
						|
 | 
						|
    if expected_len > 0 and len(dirs) != expected_len:
 | 
						|
        raise RuntimeError('Invalid array length; Expected {}, Got {}.'.format(expected_len, len(dirs)))
 | 
						|
 | 
						|
    return dirs
 | 
						|
 | 
						|
def getRelevantFeaturesCSV(line):
 | 
						|
    ret = list()
 | 
						|
    ret.extend(getFeatures(line));
 | 
						|
    if ENABLE_FEATURE_IAT is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['iat_data'], N_DIRS - 1))
 | 
						|
    if ENABLE_FEATURE_PKTLEN is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['pktlen_data'], N_DIRS))
 | 
						|
    if ENABLE_FEATURE_DIRS is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['directions'], N_DIRS))
 | 
						|
    if ENABLE_FEATURE_BINS is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['bins_c_to_s'], N_BINS))
 | 
						|
        ret.extend(getFeaturesFromArray(line['bins_s_to_c'], N_BINS))
 | 
						|
    return [ret]
 | 
						|
 | 
						|
def getRelevantFeaturesJSON(line):
 | 
						|
    ret = list()
 | 
						|
    ret.extend(getFeatures(line))
 | 
						|
    if ENABLE_FEATURE_IAT is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['data_analysis']['iat']['data'], N_DIRS - 1))
 | 
						|
    if ENABLE_FEATURE_PKTLEN is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['data_analysis']['pktlen']['data'], N_DIRS))
 | 
						|
    if ENABLE_FEATURE_DIRS is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['data_analysis']['directions'], N_DIRS))
 | 
						|
    if ENABLE_FEATURE_BINS is True:
 | 
						|
        ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['c_to_s'], N_BINS))
 | 
						|
        ret.extend(getFeaturesFromArray(line['data_analysis']['bins']['s_to_c'], N_BINS) )
 | 
						|
    return [ret]
 | 
						|
 | 
						|
def getRelevantFeatureNames():
 | 
						|
    names = list()
 | 
						|
    names.extend(['flow_src_packets_processed', 'flow_dst_packets_processed',
 | 
						|
                  'flow_src_tot_l4_payload_len', 'flow_dst_tot_l4_payload_len'])
 | 
						|
    if ENABLE_FEATURE_IAT is True:
 | 
						|
        for x in range(N_DIRS - 1):
 | 
						|
            names.append('iat_{}'.format(x))
 | 
						|
    if ENABLE_FEATURE_PKTLEN is True:
 | 
						|
        for x in range(N_DIRS):
 | 
						|
            names.append('pktlen_{}'.format(x))
 | 
						|
    if ENABLE_FEATURE_DIRS is True:
 | 
						|
        for x in range(N_DIRS):
 | 
						|
            names.append('dirs_{}'.format(x))
 | 
						|
    if ENABLE_FEATURE_BINS is True:
 | 
						|
        for x in range(N_BINS):
 | 
						|
            names.append('bins_c_to_s_{}'.format(x))
 | 
						|
        for x in range(N_BINS):
 | 
						|
            names.append('bins_s_to_c_{}'.format(x))
 | 
						|
    return names
 | 
						|
 | 
						|
def plotPermutatedImportance(model, X, y):
 | 
						|
    result = sklearn.inspection.permutation_importance(model, X, y, n_repeats=10, random_state=42, n_jobs=-1)
 | 
						|
    forest_importances = pandas.Series(result.importances_mean, index=getRelevantFeatureNames())
 | 
						|
 | 
						|
    fig, ax = matplotlib.pyplot.subplots()
 | 
						|
    forest_importances.plot.bar(yerr=result.importances_std, ax=ax)
 | 
						|
    ax.set_title("Feature importances using permutation on full model")
 | 
						|
    ax.set_ylabel("Mean accuracy decrease")
 | 
						|
    fig.tight_layout()
 | 
						|
    matplotlib.pyplot.show()
 | 
						|
 | 
						|
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
 | 
						|
    if 'flow_event_name' not in json_dict:
 | 
						|
        return True
 | 
						|
    if json_dict['flow_event_name'] != 'analyse':
 | 
						|
        return True
 | 
						|
 | 
						|
    if 'ndpi' not in json_dict:
 | 
						|
        return True
 | 
						|
    if 'proto' not in json_dict['ndpi']:
 | 
						|
        return True
 | 
						|
 | 
						|
    #print(json_dict)
 | 
						|
 | 
						|
    model, proto_class, disable_colors = global_user_data
 | 
						|
 | 
						|
    try:
 | 
						|
        X = getRelevantFeaturesJSON(json_dict)
 | 
						|
        y = model.predict(X)
 | 
						|
        s = model.score(X, y)
 | 
						|
        p = model.predict_log_proba(X)
 | 
						|
 | 
						|
        if y[0] <= 0:
 | 
						|
            y_text = 'n/a'
 | 
						|
        else:
 | 
						|
            y_text = proto_class[y[0] - 1]
 | 
						|
 | 
						|
        color_start = ''
 | 
						|
        color_end = ''
 | 
						|
        pred_failed = False
 | 
						|
        if disable_colors is False:
 | 
						|
            if json_dict['ndpi']['proto'].lower().startswith(y_text) is True:
 | 
						|
                color_start = TermColor.BOLD
 | 
						|
                color_end = TermColor.END
 | 
						|
            elif y_text not in proto_class and \
 | 
						|
                 json_dict['ndpi']['proto'].lower() not in proto_class:
 | 
						|
                pass
 | 
						|
            else:
 | 
						|
                pred_failed = True
 | 
						|
                color_start = TermColor.FAIL + TermColor.BOLD + TermColor.BLINK
 | 
						|
                color_end = TermColor.END
 | 
						|
 | 
						|
        probs = str()
 | 
						|
        for i in range(len(p[0])):
 | 
						|
            if json_dict['ndpi']['proto'].lower().startswith(proto_class[i - 1]) and disable_colors is False:
 | 
						|
                probs += '{}{:>2.1f}{}, '.format(TermColor.BOLD + TermColor.BLINK if pred_failed is True else '',
 | 
						|
                                               p[0][i], TermColor.END)
 | 
						|
            elif i == y[0]:
 | 
						|
                probs += '{}{:>2.1f}{}, '.format(color_start, p[0][i], color_end)
 | 
						|
            else:
 | 
						|
                probs += '{:>2.1f}, '.format(p[0][i])
 | 
						|
        probs = probs[:-2]
 | 
						|
 | 
						|
        print('DPI Engine detected: {}{:>24}{}, Predicted: {}{:>24}{}, Score: {}, Probabilities: {}'.format(
 | 
						|
              color_start, json_dict['ndpi']['proto'].lower(), color_end,
 | 
						|
              color_start, y_text, color_end, s, probs))
 | 
						|
    except Exception as err:
 | 
						|
        print('Got exception `{}\'\nfor json: {}'.format(err, json_dict))
 | 
						|
 | 
						|
    return True
 | 
						|
 | 
						|
def isProtoClass(proto_class, line):
 | 
						|
    s = line.lower()
 | 
						|
 | 
						|
    for x in range(len(proto_class)):
 | 
						|
        if s.startswith(proto_class[x].lower()) is True:
 | 
						|
            return x + 1
 | 
						|
 | 
						|
    return 0
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    argparser = nDPIsrvd.defaultArgumentParser()
 | 
						|
    argparser.add_argument('--load-model', action='store',
 | 
						|
                           help='Load a pre-trained model file.')
 | 
						|
    argparser.add_argument('--save-model', action='store',
 | 
						|
                           help='Save the trained model to a file.')
 | 
						|
    argparser.add_argument('--csv', action='store',
 | 
						|
                           help='Input CSV file generated with nDPIsrvd-analysed.')
 | 
						|
    argparser.add_argument('--proto-class', action='append', required=True,
 | 
						|
                           help='nDPId protocol class of interest used for training and prediction. ' +
 | 
						|
                                'Can be specified multiple times. Example: tls.youtube')
 | 
						|
    argparser.add_argument('--generate-feature-importance', action='store_true',
 | 
						|
                           help='Generates the permutated feature importance with matplotlib.')
 | 
						|
    argparser.add_argument('--enable-iat', action='store_true', default=False,
 | 
						|
                           help='Enable packet (I)nter (A)rrival (T)ime for learning and prediction.')
 | 
						|
    argparser.add_argument('--enable-pktlen', action='store_true', default=False,
 | 
						|
                           help='Enable layer 4 packet lengths for learning and prediction.')
 | 
						|
    argparser.add_argument('--disable-dirs', action='store_true', default=False,
 | 
						|
                           help='Disable packet directions for learning and prediction.')
 | 
						|
    argparser.add_argument('--disable-bins', action='store_true', default=False,
 | 
						|
                           help='Disable packet length distribution for learning and prediction.')
 | 
						|
    argparser.add_argument('--disable-colors', action='store_true', default=False,
 | 
						|
                           help='Disable any coloring.')
 | 
						|
    argparser.add_argument('--sklearn-jobs', action='store', type=int, default=1,
 | 
						|
                           help='Number of sklearn processes during training.')
 | 
						|
    argparser.add_argument('--sklearn-estimators', action='store', type=int, default=1000,
 | 
						|
                           help='Number of trees in the forest.')
 | 
						|
    argparser.add_argument('--sklearn-min-samples-leaf', action='store', type=int, default=5,
 | 
						|
                           help='The minimum number of samples required to be at a leaf node.')
 | 
						|
    argparser.add_argument('--sklearn-class-weight', default='balanced', const='balanced', nargs='?',
 | 
						|
                           choices=['balanced', 'balanced_subsample'],
 | 
						|
                           help='Weights associated with the protocol classes.')
 | 
						|
    argparser.add_argument('--sklearn-max-features', default='sqrt', const='sqrt', nargs='?',
 | 
						|
                           choices=['sqrt', 'log2'],
 | 
						|
                           help='The number of features to consider when looking for the best split.')
 | 
						|
    argparser.add_argument('--sklearn-verbosity', action='store', type=int, default=0,
 | 
						|
                           help='Controls the verbosity of sklearn\'s random forest classifier.')
 | 
						|
    args = argparser.parse_args()
 | 
						|
    address = nDPIsrvd.validateAddress(args)
 | 
						|
 | 
						|
    if args.csv is None and args.load_model is None:
 | 
						|
        sys.stderr.write('{}: Either `--csv` or `--load-model` required!\n'.format(sys.argv[0]))
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    if args.csv is None and args.generate_feature_importance is True:
 | 
						|
        sys.stderr.write('{}: `--generate-feature-importance` requires `--csv`.\n'.format(sys.argv[0]))
 | 
						|
        sys.exit(1)
 | 
						|
 | 
						|
    ENABLE_FEATURE_IAT    = args.enable_iat
 | 
						|
    ENABLE_FEATURE_PKTLEN = args.enable_pktlen
 | 
						|
    ENABLE_FEATURE_DIRS   = args.disable_dirs is False
 | 
						|
    ENABLE_FEATURE_BINS   = args.disable_bins is False
 | 
						|
 | 
						|
    numpy.set_printoptions(formatter={'float_kind': "{:.1f}".format}, sign=' ')
 | 
						|
    numpy.seterr(divide = 'ignore')
 | 
						|
 | 
						|
    for i in range(len(args.proto_class)):
 | 
						|
        args.proto_class[i] = args.proto_class[i].lower()
 | 
						|
 | 
						|
    if args.load_model is not None:
 | 
						|
        sys.stderr.write('Loading model from {}\n'.format(args.load_model))
 | 
						|
        model = joblib.load(args.load_model)
 | 
						|
 | 
						|
    if args.csv is not None:
 | 
						|
        sys.stderr.write('Learning via CSV..\n')
 | 
						|
        with open(args.csv, newline='\n') as csvfile:
 | 
						|
            reader = csv.DictReader(csvfile, delimiter=',', quotechar='"')
 | 
						|
            X = list()
 | 
						|
            y = list()
 | 
						|
 | 
						|
            for line in reader:
 | 
						|
                N_DIRS = len(getFeaturesFromArray(line['directions']))
 | 
						|
                N_BINS = len(getFeaturesFromArray(line['bins_c_to_s']))
 | 
						|
                break
 | 
						|
 | 
						|
            for line in reader:
 | 
						|
                try:
 | 
						|
                    X += getRelevantFeaturesCSV(line)
 | 
						|
                    y += [isProtoClass(args.proto_class, line['proto'])]
 | 
						|
                except RuntimeError as err:
 | 
						|
                    print('Error: `{}\'\non line: {}'.format(err, line))
 | 
						|
 | 
						|
            sys.stderr.write('CSV data set contains {} entries.\n'.format(len(X)))
 | 
						|
 | 
						|
            if args.load_model is None:
 | 
						|
                model = sklearn.ensemble.RandomForestClassifier(bootstrap=False,
 | 
						|
                                                                class_weight     = args.sklearn_class_weight,
 | 
						|
                                                                n_jobs           = args.sklearn_jobs,
 | 
						|
                                                                n_estimators     = args.sklearn_estimators,
 | 
						|
                                                                verbose          = args.sklearn_verbosity,
 | 
						|
                                                                min_samples_leaf = args.sklearn_min_samples_leaf,
 | 
						|
                                                                max_features     = args.sklearn_max_features
 | 
						|
                                                               )
 | 
						|
            sys.stderr.write('Training model..\n')
 | 
						|
            model.fit(X, y)
 | 
						|
 | 
						|
            if args.generate_feature_importance is True:
 | 
						|
                sys.stderr.write('Generating feature importance .. this may take some time\n')
 | 
						|
                plotPermutatedImportance(model, X, y)
 | 
						|
 | 
						|
    if args.save_model is not None:
 | 
						|
        sys.stderr.write('Saving model to {}\n'.format(args.save_model))
 | 
						|
        joblib.dump(model, args.save_model)
 | 
						|
 | 
						|
    print('Map[*] -> [0]')
 | 
						|
    for x in range(len(args.proto_class)):
 | 
						|
        print('Map["{}"] -> [{}]'.format(args.proto_class[x], x + 1))
 | 
						|
 | 
						|
    sys.stderr.write('Predicting realtime traffic..\n')
 | 
						|
    sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
 | 
						|
    sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
 | 
						|
    nsock = nDPIsrvdSocket()
 | 
						|
    nsock.connect(address)
 | 
						|
    nsock.loop(onJsonLineRecvd, None, (model, args.proto_class, args.disable_colors))
 |