Files
nDPId-2/examples/py-machine-learning/keras-autoencoder.py
Toni Uhlig 86ac09a8db keras-autoencoder.py: Improved Model
* added initial learning rate for Adam
 * plot some metrics using pyplot

Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
2023-08-20 23:05:08 +02:00

350 lines
14 KiB
Python
Executable File

#!/usr/bin/env python3
import base64
import binascii
import datetime as dt
import math
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import multiprocessing as mp
import numpy as np
import os
import queue
import sys
import tensorflow as tf
from tensorflow.keras import models, layers, preprocessing
from tensorflow.keras.layers import Embedding, Masking, Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.utils import plot_model
from tensorflow.keras.optimizers import Adam
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
sys.path.append(os.path.dirname(sys.argv[0]))
sys.path.append(sys.base_prefix + '/share/nDPId')
import nDPIsrvd
from nDPIsrvd import nDPIsrvdSocket, TermColor
INPUT_SIZE = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
LATENT_SIZE = 16
TRAINING_SIZE = 1024
EPOCH_COUNT = 50
BATCH_SIZE = 256
LEARNING_RATE = 0.0000001
PLOT_HISTORY = 100
def generate_autoencoder():
# TODO: The current model does handle *each* packet separatly.
# But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other.
# The accuracy may (or may not) improve significantly, but some of changes in the code are required.
input_i = Input(shape=(), name='input_i')
input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i)
masked_e = Masking(mask_value=0.0, name='masked_e')(input_e)
encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e)
encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1)
encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2)
encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3)
encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4)
encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5)
encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6)
latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7)
input_l = Input(shape=(LATENT_SIZE), name='input_l')
decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l)
decoder_h2 = Dense(64, activation='relu', name='decoder_h2')(decoder_h1)
decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2)
decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3)
decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4)
decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5)
decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6)
output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7)
encoder = Model(input_e, latent, name='encoder')
decoder = Model(input_l, output_i, name='decoder')
return Adam(learning_rate=LEARNING_RATE), Model(input_e, decoder(encoder(input_e)), name='VAE')
def compile_autoencoder():
optimizer, autoencoder = generate_autoencoder()
autoencoder.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[])
return autoencoder
def get_autoencoder(load_from_file=None):
if load_from_file is None:
autoencoder = compile_autoencoder()
else:
autoencoder = models.load_model(load_from_file)
encoder_submodel = autoencoder.layers[1]
decoder_submodel = autoencoder.layers[2]
return encoder_submodel, decoder_submodel, autoencoder
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
if 'packet_event_name' not in json_dict:
return True
if json_dict['packet_event_name'] != 'packet' and \
json_dict['packet_event_name'] != 'packet-flow':
return True
shutdown_event, training_event, padded_pkts = global_user_data
if shutdown_event.is_set():
return False
try:
buf = base64.b64decode(json_dict['pkt'], validate=True)
except binascii.Error as err:
sys.stderr.write('\nBase64 Exception: {}\n'.format(str(err)))
sys.stderr.write('Affected JSON: {}\n'.format(str(json_dict)))
sys.stderr.flush()
return False
# Generate decimal byte buffer with valus from 0-255
int_buf = []
for v in buf:
int_buf.append(int(v))
mat = np.array([int_buf], dtype='float64')
# Normalize the values
mat = mat.astype('float64') / 255.0
# Mean removal
matmean = np.mean(mat, dtype='float64')
mat -= matmean
# Pad resulting matrice
buf = preprocessing.sequence.pad_sequences(mat, padding="post", maxlen=INPUT_SIZE, truncating='post', dtype='float64')
padded_pkts.put(buf[0])
#print(list(buf[0]))
if not training_event.is_set():
sys.stdout.write('.')
sys.stdout.flush()
return True
def nDPIsrvd_worker(address, shared_shutdown_event, shared_training_event, shared_packet_list):
nsock = nDPIsrvdSocket()
try:
nsock.connect(address)
padded_pkts = list()
nsock.loop(onJsonLineRecvd, None, (shared_shutdown_event, shared_training_event, shared_packet_list))
except nDPIsrvd.SocketConnectionBroken as err:
sys.stderr.write('\nnDPIsrvd-Worker Socket Error: {}\n'.format(err))
except KeyboardInterrupt:
sys.stderr.write('\n')
except Exception as err:
sys.stderr.write('\nnDPIsrvd-Worker Exception: {}\n'.format(str(err)))
sys.stderr.flush()
shared_shutdown_event.set()
def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue):
shared_training_event.set()
try:
encoder, decoder, autoencoder = get_autoencoder(load_model)
except Exception as err:
sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err)))
sys.stderr.flush()
encoder, decoder, autoencoder = get_autoencoder()
autoencoder.summary()
shared_training_event.clear()
try:
packets = list()
while not shared_shutdown_event.is_set():
try:
packet = shared_packet_queue.get(timeout=1)
except queue.Empty:
packet = None
if packet is None:
continue
packets.append(packet)
if len(packets) % TRAINING_SIZE == 0:
shared_training_event.set()
print('\nGot {} packets, training..'.format(len(packets)))
tmp = np.array(packets)
history = autoencoder.fit(
tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
validation_split=0.2,
shuffle=True
)
reconstructed_data = autoencoder.predict(tmp)
mse = np.mean(np.square(tmp - reconstructed_data))
reconstruction_accuracy = (1.0 / mse)
encoded_data = encoder.predict(tmp)
latent_activations = encoder.predict(tmp)
shared_plot_queue.put((reconstruction_accuracy, history.history['loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
packets.clear()
shared_training_event.clear()
except KeyboardInterrupt:
sys.stderr.write('\n')
except Exception as err:
if len(str(err)) == 0:
err = 'Unknown'
sys.stderr.write('\nKeras-Worker Exception: {}\n'.format(str(err)))
sys.stderr.flush()
if save_model is not None:
sys.stderr.write('Saving model to {}\n'.format(save_model))
sys.stderr.flush()
autoencoder.save(save_model)
try:
shared_shutdown_event.set()
except:
pass
def plot_animate(i, shared_plot_queue, ax, xs, ys):
if not shared_plot_queue.empty():
accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1)
epochs = len(loss)
loss_mean = sum(loss) / epochs
else:
return
(ax1, ax2, ax3, ax4) = ax
(ys1, ys2, ys3, ys4) = ys
if len(xs) == 0:
xs.append(epochs)
else:
xs.append(xs[-1] + epochs)
ys1.append(accuracy)
ys2.append(loss_mean)
xs = xs[-PLOT_HISTORY:]
ys1 = ys1[-PLOT_HISTORY:]
ys2 = ys2[-PLOT_HISTORY:]
ax1.clear()
ax1.plot(xs, ys1, '-')
ax2.clear()
ax2.plot(xs, ys2, '-')
ax3.clear()
ax3.scatter(encoded_data0, encoded_data1, marker='.')
ax4.clear()
ax4.imshow(latent_activations, cmap='viridis', aspect='auto')
ax1.set_xlabel('Epoch Count')
ax1.set_ylabel('Accuracy')
ax2.set_xlabel('Epoch Count')
ax2.set_ylabel('Loss')
ax3.set_title('Latent Space')
ax4.set_title('Latent Space Heatmap')
ax4.set_xlabel('Latent Dimensions')
ax4.set_ylabel('Datapoints')
def plot_worker(shared_shutdown_event, shared_plot_queue):
try:
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
fig.tight_layout()
ax1.set_xlabel('Epoch Count')
ax1.set_ylabel('Accuracy')
ax2.set_xlabel('Epoch Count')
ax2.set_ylabel('Loss')
ax3.set_title('Latent Space')
ax4.set_title('Latent Space Heatmap')
ax4.set_xlabel('Latent Dimensions')
ax4.set_ylabel('Datapoints')
xs = []
ys1 = []
ys2 = []
ys3 = []
ys4 = []
x = 0
ani = animation.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
plt.show()
except Exception as err:
sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err)))
sys.stderr.flush()
shared_shutdown_event.set()
return
if __name__ == '__main__':
sys.stderr.write('\b\n***************\n')
sys.stderr.write('*** WARNING ***\n')
sys.stderr.write('***************\n')
sys.stderr.write('\nThis is an unmature Autoencoder example.\n')
sys.stderr.write('Please do not rely on any of it\'s output!\n\n')
argparser = nDPIsrvd.defaultArgumentParser()
argparser.add_argument('--load-model', action='store',
help='Load a pre-trained model file.')
argparser.add_argument('--save-model', action='store',
help='Save the trained model to a file.')
argparser.add_argument('--training-size', action='store', type=int,
help='Set the amount of captured packets required to start the training phase.')
argparser.add_argument('--batch-size', action='store', type=int,
help='Set the batch size used for the training phase.')
argparser.add_argument('--learning-rate', action='store', type=float,
help='Set the (initial!) learning rate for the Adam optimizer.')
argparser.add_argument('--plot', action='store_true', default=False,
help='Show some model metrics using pyplot.')
argparser.add_argument('--plot-history', action='store', type=int,
help='Set the history size of Line plots. Requires --plot')
args = argparser.parse_args()
address = nDPIsrvd.validateAddress(args)
LEARNING_RATE = args.learning_rate if args.learning_rate is not None else LEARNING_RATE
TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
BATCH_SIZE = args.batch_size if args.batch_size is not None else BATCH_SIZE
if args.plot is False and args.plot_history is not None:
raise RuntimeError('--plot-history requires --plot')
PLOT_HISTORY = args.plot_history if args.plot_history is not None else PLOT_HISTORY
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(args.plot, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
mgr = mp.Manager()
shared_training_event = mgr.Event()
shared_training_event.clear()
shared_shutdown_event = mgr.Event()
shared_shutdown_event.clear()
shared_packet_queue = mgr.JoinableQueue()
shared_plot_queue = mgr.JoinableQueue()
nDPIsrvd_job = mp.Process(target=nDPIsrvd_worker, args=(
address,
shared_shutdown_event,
shared_training_event,
shared_packet_queue
))
nDPIsrvd_job.start()
keras_job = mp.Process(target=keras_worker, args=(
args.load_model,
args.save_model,
shared_shutdown_event,
shared_training_event,
shared_packet_queue,
shared_plot_queue
))
keras_job.start()
if args.plot is True:
plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue))
plot_job.start()
try:
shared_shutdown_event.wait()
except KeyboardInterrupt:
print('\nShutting down worker processess..')
if args.plot is True:
plot_job.terminate()
plot_job.join()
nDPIsrvd_job.terminate()
nDPIsrvd_job.join()
keras_job.join()