Improved py-machine-learning example.

* colorize/prettify output
 * added sklearn controls/tuning options
 * disable IAT/Packet-Length features as default

Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
Toni Uhlig
2022-10-11 20:20:01 +02:00
parent bb633bde22
commit 4069816d69

View File

@@ -22,8 +22,8 @@ from nDPIsrvd import nDPIsrvdSocket, TermColor
N_DIRS = 0
N_BINS = 0
ENABLE_FEATURE_IAT = True
ENABLE_FEATURE_PKTLEN = True
ENABLE_FEATURE_IAT = False
ENABLE_FEATURE_PKTLEN = False
ENABLE_FEATURE_DIRS = True
ENABLE_FEATURE_BINS = True
@@ -119,15 +119,48 @@ def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
#print(json_dict)
model, = global_user_data
model, proto_class, disable_colors = global_user_data
try:
X = getRelevantFeaturesJSON(json_dict)
y = model.predict(X)
s = model.score(X, y)
p = model.predict_log_proba(X)
print('DPI Engine detected: {:>24}, Prediction: {:>3}, Score: {}, Probabilities: {}'.format(
'"' + str(json_dict['ndpi']['proto']) + '"', '"' + str(y) + '"', s, p[0]))
if y[0] <= 0:
y_text = 'n/a'
else:
y_text = proto_class[y[0] - 1]
color_start = ''
color_end = ''
pred_failed = False
if disable_colors is False:
if json_dict['ndpi']['proto'].lower().startswith(y_text) is True:
color_start = TermColor.BOLD
color_end = TermColor.END
elif y_text not in proto_class and \
json_dict['ndpi']['proto'].lower() not in proto_class:
pass
else:
pred_failed = True
color_start = TermColor.FAIL + TermColor.BOLD + TermColor.BLINK
color_end = TermColor.END
probs = str()
for i in range(len(p[0])):
if json_dict['ndpi']['proto'].lower().startswith(proto_class[i - 1]) and disable_colors is False:
probs += '{}{:>2.1f}{}, '.format(TermColor.BOLD + TermColor.BLINK if pred_failed is True else '',
p[0][i], TermColor.END)
elif i == y[0]:
probs += '{}{:>2.1f}{}, '.format(color_start, p[0][i], color_end)
else:
probs += '{:>2.1f}, '.format(p[0][i])
probs = probs[:-2]
print('DPI Engine detected: {}{:>24}{}, Predicted: {}{:>24}{}, Score: {}, Probabilities: {}'.format(
color_start, json_dict['ndpi']['proto'], color_end,
color_start, y_text, color_end, s, probs))
except Exception as err:
print('Got exception `{}\'\nfor json: {}'.format(err, json_dict))
@@ -147,27 +180,41 @@ if __name__ == '__main__':
argparser.add_argument('--csv', action='store', required=True,
help='Input CSV file generated with nDPIsrvd-analysed.')
argparser.add_argument('--proto-class', action='append', required=True,
help='nDPId protocol class of interest used for training and prediction. Can be specified multiple times. Example: tls.youtube')
help='nDPId protocol class of interest used for training and prediction. ' +
'Can be specified multiple times. Example: tls.youtube')
argparser.add_argument('--generate-feature-importance', action='store_true',
help='Generates the permutated feature importance with matplotlib.')
argparser.add_argument('--enable-iat', action='store', default=True,
help='Use packet (I)nter (A)rrival (T)ime for learning and prediction.')
argparser.add_argument('--enable-pktlen', action='store', default=False,
help='Use layer 4 packet lengths for learning and prediction.')
argparser.add_argument('--enable-dirs', action='store', default=True,
help='Use packet directions for learning and prediction.')
argparser.add_argument('--enable-bins', action='store', default=True,
help='Use packet length distribution for learning and prediction.')
argparser.add_argument('--enable-iat', action='store_true', default=False,
help='Enable packet (I)nter (A)rrival (T)ime for learning and prediction.')
argparser.add_argument('--enable-pktlen', action='store_true', default=False,
help='Enable layer 4 packet lengths for learning and prediction.')
argparser.add_argument('--disable-dirs', action='store_true', default=False,
help='Disable packet directions for learning and prediction.')
argparser.add_argument('--disable-bins', action='store_true', default=False,
help='Disable packet length distribution for learning and prediction.')
argparser.add_argument('--disable-colors', action='store_true', default=False,
help='Disable any coloring.')
argparser.add_argument('--sklearn-jobs', action='store', type=int, default=1,
help='Number of sklearn processes during training.')
argparser.add_argument('--sklearn-estimators', action='store', type=int, default=1000,
help='Number of trees in the forest.')
argparser.add_argument('--sklearn-min-samples-leaf', action='store', type=int, default=5,
help='The minimum number of samples required to be at a leaf node.')
argparser.add_argument('--sklearn-class-weight', default='balanced', const='balanced', nargs='?',
choices=['balanced', 'balanced_subsample'],
help='Weights associated with the protocol classes.')
argparser.add_argument('--sklearn-max-features', default='sqrt', const='sqrt', nargs='?',
choices=['sqrt', 'log2'],
help='The number of features to consider when looking for the best split.')
argparser.add_argument('--sklearn-verbosity', action='store', type=int, default=0,
help='Controls the verbosity of sklearn\'s random forest classifier.')
args = argparser.parse_args()
address = nDPIsrvd.validateAddress(args)
ENABLE_FEATURE_IAT = args.enable_iat
ENABLE_FEATURE_PKTLEN = args.enable_pktlen
ENABLE_FEATURE_DIRS = args.enable_dirs
ENABLE_FEATURE_BINS = args.enable_bins
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
ENABLE_FEATURE_DIRS = args.disable_dirs is False
ENABLE_FEATURE_BINS = args.disable_bins is False
numpy.set_printoptions(formatter={'float_kind': "{:.1f}".format}, sign=' ')
numpy.seterr(divide = 'ignore')
@@ -185,12 +232,23 @@ if __name__ == '__main__':
for line in reader:
try:
#if isProtoClass(args.proto_class, line['proto']) > 0:
X += getRelevantFeaturesCSV(line)
y += [isProtoClass(args.proto_class, line['proto'])]
except RuntimeError as err:
print('Error: `{}\'\non line: {}'.format(err, line))
model = sklearn.ensemble.RandomForestClassifier()
sys.stderr.write('CSV data set contains {} entries.\n'.format(len(X)))
model = sklearn.ensemble.RandomForestClassifier(bootstrap=False,
class_weight = args.sklearn_class_weight,
n_jobs = args.sklearn_jobs,
n_estimators = args.sklearn_estimators,
verbose = args.sklearn_verbosity,
min_samples_leaf = args.sklearn_min_samples_leaf,
max_features = args.sklearn_max_features
)
sys.stderr.write('Training model..\n')
model.fit(X, y)
if args.generate_feature_importance is True:
@@ -202,6 +260,8 @@ if __name__ == '__main__':
print('Map["{}"] -> [{}]'.format(args.proto_class[x], x + 1))
sys.stderr.write('Predicting realtime traffic..\n')
sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
nsock = nDPIsrvdSocket()
nsock.connect(address)
nsock.loop(onJsonLineRecvd, None, (model,))
nsock.loop(onJsonLineRecvd, None, (model, args.proto_class, args.disable_colors))