Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
Toni Uhlig
2023-01-11 06:13:51 +01:00
parent ac3757a367
commit 470ed99eaf
4 changed files with 11 additions and 2 deletions

3
.gitmodules vendored
View File

@@ -6,3 +6,6 @@
[submodule "examples/js-rt-analyzer"]
path = examples/js-rt-analyzer
url = https://gitlab.com/verzulli/ndpid-rt-analyzer.git
[submodule "examples/js-rt-analyzer-frontend"]
path = examples/js-rt-analyzer-frontend
url = git@gitlab.com:verzulli/ndpid-rt-analyzer-frontend.git

View File

@@ -30,6 +30,10 @@ Integration example that verifies flow timeouts on SIGUSR1.
[nDPId-rt-analyzer](https://gitlab.com/verzulli/ndpid-rt-analyzer.git)
## js-rt-analyzer-frontend
[nDPId-rt-analyzer-frontend](https://gitlab.com/verzulli/ndpid-rt-analyzer-frontend.git)
## py-flow-info
Console friendly, colorful, prettyfied event printer.
@@ -44,7 +48,8 @@ Try it with: `./examples/py-machine-learning/sklearn_random_forest.py --csv ./nd
This way you should get 9 different classification classes.
You may notice that some classes e.g. TLS protocol classifications may have a higher false-negative rate.
Unfortunately, I can not provide any datasets due to some privacy concerns.
But you can use a [pre-trained model](https://drive.google.com/file/d/1KEwbP-Gx7KJr54wNoa63I56VI4USCAPL/view?usp=sharing) with `--load-model` and the aformentioned parameters.
But you can use a [pre-trained model](https://drive.google.com/file/d/1KEwbP-Gx7KJr54wNoa63I56VI4USCAPL/view?usp=sharing) with `--load-model`.
## py-flow-dashboard