mirror of
				https://github.com/optim-enterprises-bv/nDPId.git
				synced 2025-11-04 12:17:50 +00:00 
			
		
		
		
	keras-autoencoder.py: Improved Model
* added initial learning rate for Adam * plot some metrics using pyplot Signed-off-by: Toni Uhlig <matzeton@googlemail.com>
This commit is contained in:
		@@ -2,13 +2,23 @@
 | 
			
		||||
 | 
			
		||||
import base64
 | 
			
		||||
import binascii
 | 
			
		||||
import joblib
 | 
			
		||||
import datetime as dt
 | 
			
		||||
import math
 | 
			
		||||
import matplotlib.animation as animation
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import multiprocessing as mp
 | 
			
		||||
import numpy as np
 | 
			
		||||
import os
 | 
			
		||||
import queue
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
import tensorflow as tf
 | 
			
		||||
from tensorflow.keras import models, layers, preprocessing
 | 
			
		||||
from tensorflow.keras.layers import Embedding, Masking, Input, Dense
 | 
			
		||||
from tensorflow.keras.models import Model
 | 
			
		||||
from tensorflow.keras.utils import plot_model
 | 
			
		||||
from tensorflow.keras.optimizers import Adam
 | 
			
		||||
 | 
			
		||||
sys.path.append(os.path.dirname(sys.argv[0]) + '/../../dependencies')
 | 
			
		||||
sys.path.append(os.path.dirname(sys.argv[0]) + '/../share/nDPId')
 | 
			
		||||
sys.path.append(os.path.dirname(sys.argv[0]))
 | 
			
		||||
@@ -17,20 +27,28 @@ import nDPIsrvd
 | 
			
		||||
from nDPIsrvd import nDPIsrvdSocket, TermColor
 | 
			
		||||
 | 
			
		||||
INPUT_SIZE    = nDPIsrvd.nDPId_PACKETS_PLEN_MAX
 | 
			
		||||
LATENT_SIZE = 8
 | 
			
		||||
TRAINING_SIZE = 500
 | 
			
		||||
EPOCH_COUNT = 5
 | 
			
		||||
BATCH_SIZE = 10
 | 
			
		||||
LATENT_SIZE   = 16
 | 
			
		||||
TRAINING_SIZE = 1024
 | 
			
		||||
EPOCH_COUNT   = 50
 | 
			
		||||
BATCH_SIZE    = 256
 | 
			
		||||
LEARNING_RATE = 0.0000001
 | 
			
		||||
PLOT_HISTORY  = 100
 | 
			
		||||
 | 
			
		||||
def generate_autoencoder():
 | 
			
		||||
    # TODO: The current model does handle *each* packet separatly.
 | 
			
		||||
    #       But in fact, depending on the nDPId settings (nDPId_PACKETS_PER_FLOW_TO_SEND), packets can be in relation to each other.
 | 
			
		||||
    #       The accuracy may (or may not) improve significantly, but some of changes in the code are required.
 | 
			
		||||
    input_i = Input(shape=(), name='input_i')
 | 
			
		||||
    input_e = Embedding(input_dim=INPUT_SIZE, output_dim=INPUT_SIZE, mask_zero=True, name='input_e')(input_i)
 | 
			
		||||
    encoded_h1 = Dense(1024, activation='relu', name='encoded_h1')(input_e)
 | 
			
		||||
    encoded_h2 = Dense(512, activation='relu', name='encoded_h2')(encoded_h1)
 | 
			
		||||
    encoded_h3 = Dense(128, activation='relu', name='encoded_h3')(encoded_h2)
 | 
			
		||||
    encoded_h4 = Dense(64, activation='relu', name='encoded_h4')(encoded_h3)
 | 
			
		||||
    encoded_h5 = Dense(32, activation='relu', name='encoded_h5')(encoded_h4)
 | 
			
		||||
    latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h5)
 | 
			
		||||
    masked_e = Masking(mask_value=0.0, name='masked_e')(input_e)
 | 
			
		||||
    encoded_h1 = Dense(4096, activation='relu', name='encoded_h1')(masked_e)
 | 
			
		||||
    encoded_h2 = Dense(2048, activation='relu', name='encoded_h2')(encoded_h1)
 | 
			
		||||
    encoded_h3 = Dense(1024, activation='relu', name='encoded_h3')(encoded_h2)
 | 
			
		||||
    encoded_h4 = Dense(512, activation='relu', name='encoded_h4')(encoded_h3)
 | 
			
		||||
    encoded_h5 = Dense(128, activation='relu', name='encoded_h5')(encoded_h4)
 | 
			
		||||
    encoded_h6 = Dense(64, activation='relu', name='encoded_h6')(encoded_h5)
 | 
			
		||||
    encoded_h7 = Dense(32, activation='relu', name='encoded_h7')(encoded_h6)
 | 
			
		||||
    latent = Dense(LATENT_SIZE, activation='relu', name='latent')(encoded_h7)
 | 
			
		||||
 | 
			
		||||
    input_l = Input(shape=(LATENT_SIZE), name='input_l')
 | 
			
		||||
    decoder_h1 = Dense(32, activation='relu', name='decoder_h1')(input_l)
 | 
			
		||||
@@ -38,16 +56,28 @@ def generate_autoencoder():
 | 
			
		||||
    decoder_h3 = Dense(128, activation='relu', name='decoder_h3')(decoder_h2)
 | 
			
		||||
    decoder_h4 = Dense(512, activation='relu', name='decoder_h4')(decoder_h3)
 | 
			
		||||
    decoder_h5 = Dense(1024, activation='relu', name='decoder_h5')(decoder_h4)
 | 
			
		||||
    output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h5)
 | 
			
		||||
    decoder_h6 = Dense(2048, activation='relu', name='decoder_h6')(decoder_h5)
 | 
			
		||||
    decoder_h7 = Dense(4096, activation='relu', name='decoder_h7')(decoder_h6)
 | 
			
		||||
    output_i = Dense(INPUT_SIZE, activation='sigmoid', name='output_i')(decoder_h7)
 | 
			
		||||
 | 
			
		||||
    encoder = Model(input_e, latent, name='encoder')
 | 
			
		||||
    decoder = Model(input_l, output_i, name='decoder')
 | 
			
		||||
    return encoder, decoder, Model(input_e, decoder(encoder(input_e)), name='VAE')
 | 
			
		||||
    return Adam(learning_rate=LEARNING_RATE), Model(input_e, decoder(encoder(input_e)), name='VAE')
 | 
			
		||||
 | 
			
		||||
def compile_autoencoder():
 | 
			
		||||
    encoder, decoder, autoencoder = generate_autoencoder()
 | 
			
		||||
    autoencoder.compile(loss='mse', optimizer='adam', metrics=[tf.keras.metrics.Accuracy()])
 | 
			
		||||
    return encoder, decoder, autoencoder
 | 
			
		||||
    optimizer, autoencoder = generate_autoencoder()
 | 
			
		||||
    autoencoder.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[])
 | 
			
		||||
    return autoencoder
 | 
			
		||||
 | 
			
		||||
def get_autoencoder(load_from_file=None):
 | 
			
		||||
    if load_from_file is None:
 | 
			
		||||
        autoencoder = compile_autoencoder()
 | 
			
		||||
    else:
 | 
			
		||||
        autoencoder = models.load_model(load_from_file)
 | 
			
		||||
 | 
			
		||||
    encoder_submodel = autoencoder.layers[1]
 | 
			
		||||
    decoder_submodel = autoencoder.layers[2]
 | 
			
		||||
    return encoder_submodel, decoder_submodel, autoencoder
 | 
			
		||||
 | 
			
		||||
def onJsonLineRecvd(json_dict, instance, current_flow, global_user_data):
 | 
			
		||||
    if 'packet_event_name' not in json_dict:
 | 
			
		||||
@@ -112,22 +142,14 @@ def nDPIsrvd_worker(address, shared_shutdown_event, shared_training_event, share
 | 
			
		||||
 | 
			
		||||
    shared_shutdown_event.set()
 | 
			
		||||
 | 
			
		||||
def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue):
 | 
			
		||||
def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_event, shared_packet_queue, shared_plot_queue):
 | 
			
		||||
    shared_training_event.set()
 | 
			
		||||
    if load_model is not None:
 | 
			
		||||
        sys.stderr.write('Loading model from {}\n'.format(load_model))
 | 
			
		||||
        sys.stderr.flush()
 | 
			
		||||
    try:
 | 
			
		||||
            encoder, decoder, autoencoder = joblib.load(load_model)
 | 
			
		||||
        except:
 | 
			
		||||
            sys.stderr.write('Could not load model from {}\n'.format(load_model))
 | 
			
		||||
            sys.stderr.write('Compiling new Autoencoder..\n')
 | 
			
		||||
        encoder, decoder, autoencoder = get_autoencoder(load_model)
 | 
			
		||||
    except Exception as err:
 | 
			
		||||
        sys.stderr.write('Could not load Keras model from file: {}\n'.format(str(err)))
 | 
			
		||||
        sys.stderr.flush()
 | 
			
		||||
            encoder, decoder, autoencoder = compile_autoencoder()
 | 
			
		||||
    else:
 | 
			
		||||
        encoder, decoder, autoencoder = compile_autoencoder()
 | 
			
		||||
    decoder.summary()
 | 
			
		||||
    encoder.summary()
 | 
			
		||||
        encoder, decoder, autoencoder = get_autoencoder()
 | 
			
		||||
    autoencoder.summary()
 | 
			
		||||
    shared_training_event.clear()
 | 
			
		||||
 | 
			
		||||
@@ -147,12 +169,17 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
 | 
			
		||||
                shared_training_event.set()
 | 
			
		||||
                print('\nGot {} packets, training..'.format(len(packets)))
 | 
			
		||||
                tmp = np.array(packets)
 | 
			
		||||
                x_test_encoded = encoder.predict(tmp, batch_size=BATCH_SIZE)
 | 
			
		||||
                history = autoencoder.fit(
 | 
			
		||||
                                          tmp, tmp, epochs=EPOCH_COUNT, batch_size=BATCH_SIZE,
 | 
			
		||||
                                          validation_split=0.2,
 | 
			
		||||
                                          shuffle=True
 | 
			
		||||
                                         )
 | 
			
		||||
                reconstructed_data = autoencoder.predict(tmp)
 | 
			
		||||
                mse = np.mean(np.square(tmp - reconstructed_data))
 | 
			
		||||
                reconstruction_accuracy = (1.0 / mse)
 | 
			
		||||
                encoded_data = encoder.predict(tmp)
 | 
			
		||||
                latent_activations = encoder.predict(tmp)
 | 
			
		||||
                shared_plot_queue.put((reconstruction_accuracy, history.history['loss'], encoded_data[:, 0], encoded_data[:, 1], latent_activations))
 | 
			
		||||
                packets.clear()
 | 
			
		||||
                shared_training_event.clear()
 | 
			
		||||
    except KeyboardInterrupt:
 | 
			
		||||
@@ -166,13 +193,80 @@ def keras_worker(load_model, save_model, shared_shutdown_event, shared_training_
 | 
			
		||||
    if save_model is not None:
 | 
			
		||||
        sys.stderr.write('Saving model to {}\n'.format(save_model))
 | 
			
		||||
        sys.stderr.flush()
 | 
			
		||||
        joblib.dump([encoder, decoder, autoencoder], save_model)
 | 
			
		||||
        autoencoder.save(save_model)
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        shared_shutdown_event.set()
 | 
			
		||||
    except:
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
def plot_animate(i, shared_plot_queue, ax, xs, ys):
 | 
			
		||||
    if not shared_plot_queue.empty():
 | 
			
		||||
        accuracy, loss, encoded_data0, encoded_data1, latent_activations = shared_plot_queue.get(timeout=1)
 | 
			
		||||
        epochs = len(loss)
 | 
			
		||||
        loss_mean = sum(loss) / epochs
 | 
			
		||||
    else:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    (ax1, ax2, ax3, ax4) = ax
 | 
			
		||||
    (ys1, ys2, ys3, ys4) = ys
 | 
			
		||||
 | 
			
		||||
    if len(xs) == 0:
 | 
			
		||||
        xs.append(epochs)
 | 
			
		||||
    else:
 | 
			
		||||
        xs.append(xs[-1] + epochs)
 | 
			
		||||
    ys1.append(accuracy)
 | 
			
		||||
    ys2.append(loss_mean)
 | 
			
		||||
 | 
			
		||||
    xs = xs[-PLOT_HISTORY:]
 | 
			
		||||
    ys1 = ys1[-PLOT_HISTORY:]
 | 
			
		||||
    ys2 = ys2[-PLOT_HISTORY:]
 | 
			
		||||
 | 
			
		||||
    ax1.clear()
 | 
			
		||||
    ax1.plot(xs, ys1, '-')
 | 
			
		||||
    ax2.clear()
 | 
			
		||||
    ax2.plot(xs, ys2, '-')
 | 
			
		||||
    ax3.clear()
 | 
			
		||||
    ax3.scatter(encoded_data0, encoded_data1, marker='.')
 | 
			
		||||
    ax4.clear()
 | 
			
		||||
    ax4.imshow(latent_activations, cmap='viridis', aspect='auto')
 | 
			
		||||
 | 
			
		||||
    ax1.set_xlabel('Epoch Count')
 | 
			
		||||
    ax1.set_ylabel('Accuracy')
 | 
			
		||||
    ax2.set_xlabel('Epoch Count')
 | 
			
		||||
    ax2.set_ylabel('Loss')
 | 
			
		||||
    ax3.set_title('Latent Space')
 | 
			
		||||
    ax4.set_title('Latent Space Heatmap')
 | 
			
		||||
    ax4.set_xlabel('Latent Dimensions')
 | 
			
		||||
    ax4.set_ylabel('Datapoints')
 | 
			
		||||
 | 
			
		||||
def plot_worker(shared_shutdown_event, shared_plot_queue):
 | 
			
		||||
    try:
 | 
			
		||||
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
 | 
			
		||||
        fig.tight_layout()
 | 
			
		||||
        ax1.set_xlabel('Epoch Count')
 | 
			
		||||
        ax1.set_ylabel('Accuracy')
 | 
			
		||||
        ax2.set_xlabel('Epoch Count')
 | 
			
		||||
        ax2.set_ylabel('Loss')
 | 
			
		||||
        ax3.set_title('Latent Space')
 | 
			
		||||
        ax4.set_title('Latent Space Heatmap')
 | 
			
		||||
        ax4.set_xlabel('Latent Dimensions')
 | 
			
		||||
        ax4.set_ylabel('Datapoints')
 | 
			
		||||
        xs = []
 | 
			
		||||
        ys1 = []
 | 
			
		||||
        ys2 = []
 | 
			
		||||
        ys3 = []
 | 
			
		||||
        ys4 = []
 | 
			
		||||
        x = 0
 | 
			
		||||
        ani = animation.FuncAnimation(fig, plot_animate, fargs=(shared_plot_queue, (ax1, ax2, ax3, ax4), xs, (ys1, ys2, ys3, ys4)), interval=1000, cache_frame_data=False)
 | 
			
		||||
        plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
 | 
			
		||||
        plt.show()
 | 
			
		||||
    except Exception as err:
 | 
			
		||||
        sys.stderr.write('\nPlot-Worker Exception: {}\n'.format(str(err)))
 | 
			
		||||
        sys.stderr.flush()
 | 
			
		||||
        shared_shutdown_event.set()
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    sys.stderr.write('\b\n***************\n')
 | 
			
		||||
    sys.stderr.write('*** WARNING ***\n')
 | 
			
		||||
@@ -189,21 +283,25 @@ if __name__ == '__main__':
 | 
			
		||||
                           help='Set the amount of captured packets required to start the training phase.')
 | 
			
		||||
    argparser.add_argument('--batch-size', action='store', type=int,
 | 
			
		||||
                           help='Set the batch size used for the training phase.')
 | 
			
		||||
    argparser.add_argument('--learning-rate', action='store', type=float,
 | 
			
		||||
                           help='Set the (initial!) learning rate for the Adam optimizer.')
 | 
			
		||||
    argparser.add_argument('--plot', action='store_true', default=False,
 | 
			
		||||
                           help='Show some model metrics using pyplot.')
 | 
			
		||||
    argparser.add_argument('--plot-history', action='store', type=int,
 | 
			
		||||
                           help='Set the history size of Line plots. Requires --plot')
 | 
			
		||||
    args = argparser.parse_args()
 | 
			
		||||
    address = nDPIsrvd.validateAddress(args)
 | 
			
		||||
 | 
			
		||||
    LEARNING_RATE = args.learning_rate if args.learning_rate is not None else LEARNING_RATE
 | 
			
		||||
    TRAINING_SIZE = args.training_size if args.training_size is not None else TRAINING_SIZE
 | 
			
		||||
    BATCH_SIZE    = args.batch_size if args.batch_size is not None else BATCH_SIZE
 | 
			
		||||
    if args.plot is False and args.plot_history is not None:
 | 
			
		||||
        raise RuntimeError('--plot-history requires --plot')
 | 
			
		||||
    PLOT_HISTORY  = args.plot_history if args.plot_history is not None else PLOT_HISTORY
 | 
			
		||||
 | 
			
		||||
    sys.stderr.write('Recv buffer size: {}\n'.format(nDPIsrvd.NETWORK_BUFFER_MAX_SIZE))
 | 
			
		||||
    sys.stderr.write('Connecting to {} ..\n'.format(address[0]+':'+str(address[1]) if type(address) is tuple else address))
 | 
			
		||||
    sys.stderr.write('TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(TRAINING_SIZE, BATCH_SIZE))
 | 
			
		||||
 | 
			
		||||
    import tensorflow as tf
 | 
			
		||||
    from tensorflow.keras import layers, preprocessing
 | 
			
		||||
    from tensorflow.keras.layers import Embedding, Input, Dense
 | 
			
		||||
    from tensorflow.keras.models import Model, Sequential
 | 
			
		||||
    from tensorflow.keras.utils import plot_model
 | 
			
		||||
    sys.stderr.write('PLOT={}, PLOT_HISTORY={}, LEARNING_RATE={}, TRAINING_SIZE={}, BATCH_SIZE={}\n\n'.format(args.plot, PLOT_HISTORY, LEARNING_RATE, TRAINING_SIZE, BATCH_SIZE))
 | 
			
		||||
 | 
			
		||||
    mgr = mp.Manager()
 | 
			
		||||
 | 
			
		||||
@@ -214,6 +312,7 @@ if __name__ == '__main__':
 | 
			
		||||
    shared_shutdown_event.clear()
 | 
			
		||||
 | 
			
		||||
    shared_packet_queue = mgr.JoinableQueue()
 | 
			
		||||
    shared_plot_queue = mgr.JoinableQueue()
 | 
			
		||||
 | 
			
		||||
    nDPIsrvd_job = mp.Process(target=nDPIsrvd_worker, args=(
 | 
			
		||||
                                                            address,
 | 
			
		||||
@@ -228,15 +327,23 @@ if __name__ == '__main__':
 | 
			
		||||
                                                      args.save_model,
 | 
			
		||||
                                                      shared_shutdown_event,
 | 
			
		||||
                                                      shared_training_event,
 | 
			
		||||
                                                      shared_packet_queue
 | 
			
		||||
                                                      shared_packet_queue,
 | 
			
		||||
                                                      shared_plot_queue
 | 
			
		||||
                                                     ))
 | 
			
		||||
    keras_job.start()
 | 
			
		||||
 | 
			
		||||
    if args.plot is True:
 | 
			
		||||
        plot_job = mp.Process(target=plot_worker, args=(shared_shutdown_event, shared_plot_queue))
 | 
			
		||||
        plot_job.start()
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        shared_shutdown_event.wait()
 | 
			
		||||
    except KeyboardInterrupt:
 | 
			
		||||
        print('\nShutting down worker processess..')
 | 
			
		||||
 | 
			
		||||
    if args.plot is True:
 | 
			
		||||
        plot_job.terminate()
 | 
			
		||||
        plot_job.join()
 | 
			
		||||
    nDPIsrvd_job.terminate()
 | 
			
		||||
    nDPIsrvd_job.join()
 | 
			
		||||
    keras_job.join()
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user